MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Visualization version   GIF version

Theorem ramlb 16004
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramlb.m (𝜑𝑀 ∈ ℕ0)
ramlb.r (𝜑𝑅𝑉)
ramlb.f (𝜑𝐹:𝑅⟶ℕ0)
ramlb.s (𝜑𝑁 ∈ ℕ0)
ramlb.g (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
ramlb.i ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
Assertion
Ref Expression
ramlb (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐹,𝑐,𝑥   𝐺,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝜑,𝑐,𝑥   𝑁,𝑐,𝑥   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑁(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramlb.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
32adantr 472 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4 ramlb.r . . . . . 6 (𝜑𝑅𝑉)
54adantr 472 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑅𝑉)
6 ramlb.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
76adantr 472 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐹:𝑅⟶ℕ0)
8 ramlb.s . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
98adantr 472 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑁 ∈ ℕ0)
10 simpr 477 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ 𝑁)
11 ramubcl 16003 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑁 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
123, 5, 7, 9, 10, 11syl32anc 1497 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
13 fzfid 12980 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (1...𝑁) ∈ Fin)
14 hashfz1 13338 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
158, 14syl 17 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1615breq2d 4821 . . . . . 6 (𝜑 → ((𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)) ↔ (𝑀 Ramsey 𝐹) ≤ 𝑁))
1716biimpar 469 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)))
18 ramlb.g . . . . . 6 (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
1918adantr 472 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
201, 3, 5, 7, 12, 13, 17, 19rami 16000 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
21 elpwi 4325 . . . . . . . . 9 (𝑥 ∈ 𝒫 (1...𝑁) → 𝑥 ⊆ (1...𝑁))
22 ramlb.i . . . . . . . . . . 11 ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
2322adantlr 706 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
24 fzfid 12980 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (1...𝑁) ∈ Fin)
25 simprr 789 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ⊆ (1...𝑁))
26 ssfi 8387 . . . . . . . . . . . . . 14 (((1...𝑁) ∈ Fin ∧ 𝑥 ⊆ (1...𝑁)) → 𝑥 ∈ Fin)
2724, 25, 26syl2anc 579 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ∈ Fin)
28 hashcl 13349 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℕ0)
3029nn0red 11599 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℝ)
31 simpl 474 . . . . . . . . . . . . 13 ((𝑐𝑅𝑥 ⊆ (1...𝑁)) → 𝑐𝑅)
32 ffvelrn 6547 . . . . . . . . . . . . 13 ((𝐹:𝑅⟶ℕ0𝑐𝑅) → (𝐹𝑐) ∈ ℕ0)
337, 31, 32syl2an 589 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℕ0)
3433nn0red 11599 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℝ)
3530, 34ltnled 10438 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((♯‘𝑥) < (𝐹𝑐) ↔ ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3623, 35sylibd 230 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3721, 36sylanr2 673 . . . . . . . 8 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3837con2d 131 . . . . . . 7 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝐹𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
39 imnan 388 . . . . . . 7 (((𝐹𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) ↔ ¬ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4038, 39sylib 209 . . . . . 6 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ¬ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4140pm2.21d 119 . . . . 5 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4241rexlimdvva 3185 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4320, 42mpd 15 . . 3 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
4443pm2.01da 833 . 2 (𝜑 → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
458nn0red 11599 . . . 4 (𝜑𝑁 ∈ ℝ)
4645rexrd 10343 . . 3 (𝜑𝑁 ∈ ℝ*)
47 ramxrcl 16002 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*)
482, 4, 6, 47syl3anc 1490 . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℝ*)
49 xrltnle 10359 . . 3 ((𝑁 ∈ ℝ* ∧ (𝑀 Ramsey 𝐹) ∈ ℝ*) → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5046, 48, 49syl2anc 579 . 2 (𝜑 → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5144, 50mpbird 248 1 (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wrex 3056  {crab 3059  Vcvv 3350  wss 3732  𝒫 cpw 4315  {csn 4334   class class class wbr 4809  ccnv 5276  cima 5280  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  Fincfn 8160  1c1 10190  *cxr 10327   < clt 10328  cle 10329  0cn0 11538  ...cfz 12533  chash 13321   Ramsey cram 15984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-hash 13322  df-ram 15986
This theorem is referenced by:  0ram  16005  ram0  16007
  Copyright terms: Public domain W3C validator