MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Visualization version   GIF version

Theorem ramlb 17058
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramlb.m (𝜑𝑀 ∈ ℕ0)
ramlb.r (𝜑𝑅𝑉)
ramlb.f (𝜑𝐹:𝑅⟶ℕ0)
ramlb.s (𝜑𝑁 ∈ ℕ0)
ramlb.g (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
ramlb.i ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
Assertion
Ref Expression
ramlb (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐹,𝑐,𝑥   𝐺,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝜑,𝑐,𝑥   𝑁,𝑐,𝑥   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑁(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramlb.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4 ramlb.r . . . . . 6 (𝜑𝑅𝑉)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑅𝑉)
6 ramlb.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐹:𝑅⟶ℕ0)
8 ramlb.s . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
98adantr 480 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑁 ∈ ℕ0)
10 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ 𝑁)
11 ramubcl 17057 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑁 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
123, 5, 7, 9, 10, 11syl32anc 1379 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
13 fzfid 14015 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (1...𝑁) ∈ Fin)
14 hashfz1 14386 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
158, 14syl 17 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1615breq2d 5154 . . . . . 6 (𝜑 → ((𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)) ↔ (𝑀 Ramsey 𝐹) ≤ 𝑁))
1716biimpar 477 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)))
18 ramlb.g . . . . . 6 (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
201, 3, 5, 7, 12, 13, 17, 19rami 17054 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
21 elpwi 4606 . . . . . . . . 9 (𝑥 ∈ 𝒫 (1...𝑁) → 𝑥 ⊆ (1...𝑁))
22 ramlb.i . . . . . . . . . . 11 ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
2322adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
24 fzfid 14015 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (1...𝑁) ∈ Fin)
25 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ⊆ (1...𝑁))
2624, 25ssfid 9302 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ∈ Fin)
27 hashcl 14396 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℕ0)
2928nn0red 12590 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℝ)
30 simpl 482 . . . . . . . . . . . . 13 ((𝑐𝑅𝑥 ⊆ (1...𝑁)) → 𝑐𝑅)
31 ffvelcdm 7100 . . . . . . . . . . . . 13 ((𝐹:𝑅⟶ℕ0𝑐𝑅) → (𝐹𝑐) ∈ ℕ0)
327, 30, 31syl2an 596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℕ0)
3332nn0red 12590 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℝ)
3429, 33ltnled 11409 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((♯‘𝑥) < (𝐹𝑐) ↔ ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3523, 34sylibd 239 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3621, 35sylanr2 683 . . . . . . . 8 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3736con2d 134 . . . . . . 7 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝐹𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
38 imnan 399 . . . . . . 7 (((𝐹𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) ↔ ¬ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
3937, 38sylib 218 . . . . . 6 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ¬ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4039pm2.21d 121 . . . . 5 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4140rexlimdvva 3212 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4220, 41mpd 15 . . 3 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
4342pm2.01da 798 . 2 (𝜑 → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
448nn0red 12590 . . . 4 (𝜑𝑁 ∈ ℝ)
4544rexrd 11312 . . 3 (𝜑𝑁 ∈ ℝ*)
46 ramxrcl 17056 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*)
472, 4, 6, 46syl3anc 1372 . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℝ*)
48 xrltnle 11329 . . 3 ((𝑁 ∈ ℝ* ∧ (𝑀 Ramsey 𝐹) ∈ ℝ*) → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4945, 47, 48syl2anc 584 . 2 (𝜑 → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5043, 49mpbird 257 1 (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3069  {crab 3435  Vcvv 3479  wss 3950  𝒫 cpw 4599  {csn 4625   class class class wbr 5142  ccnv 5683  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  Fincfn 8986  1c1 11157  *cxr 11295   < clt 11296  cle 11297  0cn0 12528  ...cfz 13548  chash 14370   Ramsey cram 17038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-hash 14371  df-ram 17040
This theorem is referenced by:  0ram  17059  ram0  17061
  Copyright terms: Public domain W3C validator