Proof of Theorem ramlb
Step | Hyp | Ref
| Expression |
1 | | ramlb.c |
. . . . 5
⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
2 | | ramlb.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑀 ∈
ℕ0) |
4 | | ramlb.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑅 ∈ 𝑉) |
6 | | ramlb.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑅⟶ℕ0) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐹:𝑅⟶ℕ0) |
8 | | ramlb.s |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑁 ∈
ℕ0) |
10 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ 𝑁) |
11 | | ramubcl 16647 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) ∧ (𝑁 ∈ ℕ0
∧ (𝑀 Ramsey 𝐹) ≤ 𝑁)) → (𝑀 Ramsey 𝐹) ∈
ℕ0) |
12 | 3, 5, 7, 9, 10, 11 | syl32anc 1376 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ∈
ℕ0) |
13 | | fzfid 13621 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (1...𝑁) ∈ Fin) |
14 | | hashfz1 13988 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
15 | 8, 14 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
16 | 15 | breq2d 5082 |
. . . . . 6
⊢ (𝜑 → ((𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)) ↔ (𝑀 Ramsey 𝐹) ≤ 𝑁)) |
17 | 16 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁))) |
18 | | ramlb.g |
. . . . . 6
⊢ (𝜑 → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅) |
19 | 18 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅) |
20 | 1, 3, 5, 7, 12, 13, 17, 19 | rami 16644 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 (1...𝑁)((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) |
21 | | elpwi 4539 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 (1...𝑁) → 𝑥 ⊆ (1...𝑁)) |
22 | | ramlb.i |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹‘𝑐))) |
23 | 22 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹‘𝑐))) |
24 | | fzfid 13621 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → (1...𝑁) ∈ Fin) |
25 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → 𝑥 ⊆ (1...𝑁)) |
26 | 24, 25 | ssfid 8971 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → 𝑥 ∈ Fin) |
27 | | hashcl 13999 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
ℕ0) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈
ℕ0) |
29 | 28 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℝ) |
30 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁)) → 𝑐 ∈ 𝑅) |
31 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑅⟶ℕ0 ∧ 𝑐 ∈ 𝑅) → (𝐹‘𝑐) ∈
ℕ0) |
32 | 7, 30, 31 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → (𝐹‘𝑐) ∈
ℕ0) |
33 | 32 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → (𝐹‘𝑐) ∈ ℝ) |
34 | 29, 33 | ltnled 11052 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((♯‘𝑥) < (𝐹‘𝑐) ↔ ¬ (𝐹‘𝑐) ≤ (♯‘𝑥))) |
35 | 23, 34 | sylibd 238 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → ¬ (𝐹‘𝑐) ≤ (♯‘𝑥))) |
36 | 21, 35 | sylanr2 679 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}) → ¬ (𝐹‘𝑐) ≤ (♯‘𝑥))) |
37 | 36 | con2d 134 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 (1...𝑁))) → ((𝐹‘𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) |
38 | | imnan 399 |
. . . . . . 7
⊢ (((𝐹‘𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐})) ↔ ¬ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) |
39 | 37, 38 | sylib 217 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 (1...𝑁))) → ¬ ((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐}))) |
40 | 39 | pm2.21d 121 |
. . . . 5
⊢ (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 (1...𝑁))) → (((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)) |
41 | 40 | rexlimdvva 3222 |
. . . 4
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (∃𝑐 ∈ 𝑅 ∃𝑥 ∈ 𝒫 (1...𝑁)((𝐹‘𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (◡𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)) |
42 | 20, 41 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁) |
43 | 42 | pm2.01da 795 |
. 2
⊢ (𝜑 → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁) |
44 | 8 | nn0red 12224 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℝ) |
45 | 44 | rexrd 10956 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℝ*) |
46 | | ramxrcl 16646 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ 𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈
ℝ*) |
47 | 2, 4, 6, 46 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝑀 Ramsey 𝐹) ∈
ℝ*) |
48 | | xrltnle 10973 |
. . 3
⊢ ((𝑁 ∈ ℝ*
∧ (𝑀 Ramsey 𝐹) ∈ ℝ*)
→ (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)) |
49 | 45, 47, 48 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)) |
50 | 43, 49 | mpbird 256 |
1
⊢ (𝜑 → 𝑁 < (𝑀 Ramsey 𝐹)) |