MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Visualization version   GIF version

Theorem ramlb 16990
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
ramlb.m (𝜑𝑀 ∈ ℕ0)
ramlb.r (𝜑𝑅𝑉)
ramlb.f (𝜑𝐹:𝑅⟶ℕ0)
ramlb.s (𝜑𝑁 ∈ ℕ0)
ramlb.g (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
ramlb.i ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
Assertion
Ref Expression
ramlb (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐹,𝑐,𝑥   𝐺,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝜑,𝑐,𝑥   𝑁,𝑐,𝑥   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑁(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
2 ramlb.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4 ramlb.r . . . . . 6 (𝜑𝑅𝑉)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑅𝑉)
6 ramlb.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐹:𝑅⟶ℕ0)
8 ramlb.s . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
98adantr 480 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑁 ∈ ℕ0)
10 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ 𝑁)
11 ramubcl 16989 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑁 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
123, 5, 7, 9, 10, 11syl32anc 1380 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
13 fzfid 13938 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (1...𝑁) ∈ Fin)
14 hashfz1 14311 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
158, 14syl 17 . . . . . . 7 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1615breq2d 5119 . . . . . 6 (𝜑 → ((𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)) ↔ (𝑀 Ramsey 𝐹) ≤ 𝑁))
1716biimpar 477 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ (♯‘(1...𝑁)))
18 ramlb.g . . . . . 6 (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
201, 3, 5, 7, 12, 13, 17, 19rami 16986 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
21 elpwi 4570 . . . . . . . . 9 (𝑥 ∈ 𝒫 (1...𝑁) → 𝑥 ⊆ (1...𝑁))
22 ramlb.i . . . . . . . . . . 11 ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
2322adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (♯‘𝑥) < (𝐹𝑐)))
24 fzfid 13938 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (1...𝑁) ∈ Fin)
25 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ⊆ (1...𝑁))
2624, 25ssfid 9212 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ∈ Fin)
27 hashcl 14321 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℕ0)
2928nn0red 12504 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (♯‘𝑥) ∈ ℝ)
30 simpl 482 . . . . . . . . . . . . 13 ((𝑐𝑅𝑥 ⊆ (1...𝑁)) → 𝑐𝑅)
31 ffvelcdm 7053 . . . . . . . . . . . . 13 ((𝐹:𝑅⟶ℕ0𝑐𝑅) → (𝐹𝑐) ∈ ℕ0)
327, 30, 31syl2an 596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℕ0)
3332nn0red 12504 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℝ)
3429, 33ltnled 11321 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((♯‘𝑥) < (𝐹𝑐) ↔ ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3523, 34sylibd 239 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3621, 35sylanr2 683 . . . . . . . 8 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (♯‘𝑥)))
3736con2d 134 . . . . . . 7 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝐹𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
38 imnan 399 . . . . . . 7 (((𝐹𝑐) ≤ (♯‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) ↔ ¬ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
3937, 38sylib 218 . . . . . 6 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ¬ ((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4039pm2.21d 121 . . . . 5 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → (((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4140rexlimdvva 3194 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (♯‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4220, 41mpd 15 . . 3 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
4342pm2.01da 798 . 2 (𝜑 → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
448nn0red 12504 . . . 4 (𝜑𝑁 ∈ ℝ)
4544rexrd 11224 . . 3 (𝜑𝑁 ∈ ℝ*)
46 ramxrcl 16988 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*)
472, 4, 6, 46syl3anc 1373 . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℝ*)
48 xrltnle 11241 . . 3 ((𝑁 ∈ ℝ* ∧ (𝑀 Ramsey 𝐹) ∈ ℝ*) → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4945, 47, 48syl2anc 584 . 2 (𝜑 → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5043, 49mpbird 257 1 (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  1c1 11069  *cxr 11207   < clt 11208  cle 11209  0cn0 12442  ...cfz 13468  chash 14295   Ramsey cram 16970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-ram 16972
This theorem is referenced by:  0ram  16991  ram0  16993
  Copyright terms: Public domain W3C validator