MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosne0 Structured version   Visualization version   GIF version

Theorem cosne0 25885
Description: The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
cosne0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)

Proof of Theorem cosne0
StepHypRef Expression
1 halfpire 25821 . . . . . 6 (π / 2) ∈ ℝ
21recni 11169 . . . . 5 (π / 2) ∈ ℂ
3 simpl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
4 nncan 11430 . . . . 5 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
52, 3, 4sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
65fveq2d 6846 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
7 subcl 11400 . . . . 5 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
82, 3, 7sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((π / 2) − 𝐴) ∈ ℂ)
9 coshalfpim 25852 . . . 4 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
108, 9syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
116, 10eqtr3d 2778 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
125adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
13 picn 25816 . . . . . . . . . . . . 13 π ∈ ℂ
1413a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℂ)
15 pire 25815 . . . . . . . . . . . . . 14 π ∈ ℝ
16 pipos 25817 . . . . . . . . . . . . . 14 0 < π
1715, 16gt0ne0ii 11691 . . . . . . . . . . . . 13 π ≠ 0
1817a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ≠ 0)
198, 14, 18divcan1d 11932 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2) − 𝐴))
2019adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2) − 𝐴))
21 zre 12503 . . . . . . . . . . . 12 ((((π / 2) − 𝐴) / π) ∈ ℤ → (((π / 2) − 𝐴) / π) ∈ ℝ)
2221adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (((π / 2) − 𝐴) / π) ∈ ℝ)
23 remulcl 11136 . . . . . . . . . . 11 (((((π / 2) − 𝐴) / π) ∈ ℝ ∧ π ∈ ℝ) → ((((π / 2) − 𝐴) / π) · π) ∈ ℝ)
2422, 15, 23sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π / 2) − 𝐴) / π) · π) ∈ ℝ)
2520, 24eqeltrrd 2839 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − 𝐴) ∈ ℝ)
26 resubcl 11465 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ ((π / 2) − 𝐴) ∈ ℝ) → ((π / 2) − ((π / 2) − 𝐴)) ∈ ℝ)
271, 25, 26sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − ((π / 2) − 𝐴)) ∈ ℝ)
2812, 27eqeltrrd 2839 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ ℝ)
2928rered 15109 . . . . . 6 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (ℜ‘𝐴) = 𝐴)
30 simplr 767 . . . . . 6 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
3129, 30eqeltrrd 2839 . . . . 5 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
32 0zd 12511 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 ∈ ℤ)
33 elioore 13294 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
34 resubcl 11465 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
351, 33, 34sylancr 587 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ)
3615a1i 11 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → π ∈ ℝ)
37 eliooord 13323 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝐴𝐴 < (π / 2)))
3837simprd 496 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
39 posdif 11648 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
4033, 1, 39sylancl 586 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
4138, 40mpbid 231 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴))
4216a1i 11 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < π)
4335, 36, 41, 42divgt0d 12090 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (((π / 2) − 𝐴) / π))
441a1i 11 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (π / 2) ∈ ℝ)
452negcli 11469 . . . . . . . . . . . 12 -(π / 2) ∈ ℂ
4613, 2negsubi 11479 . . . . . . . . . . . . 13 (π + -(π / 2)) = (π − (π / 2))
47 pidiv2halves 25824 . . . . . . . . . . . . . 14 ((π / 2) + (π / 2)) = π
4813, 2, 2, 47subaddrii 11490 . . . . . . . . . . . . 13 (π − (π / 2)) = (π / 2)
4946, 48eqtri 2764 . . . . . . . . . . . 12 (π + -(π / 2)) = (π / 2)
502, 13, 45, 49subaddrii 11490 . . . . . . . . . . 11 ((π / 2) − π) = -(π / 2)
5137simpld 495 . . . . . . . . . . 11 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
5250, 51eqbrtrid 5140 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴)
5344, 36, 33, 52ltsub23d 11760 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π)
5413mulid1i 11159 . . . . . . . . 9 (π · 1) = π
5553, 54breqtrrdi 5147 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < (π · 1))
56 1red 11156 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 1 ∈ ℝ)
57 ltdivmul 12030 . . . . . . . . 9 ((((π / 2) − 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) − 𝐴) < (π · 1)))
5835, 56, 36, 42, 57syl112anc 1374 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) − 𝐴) < (π · 1)))
5955, 58mpbird 256 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) / π) < 1)
60 1e0p1 12660 . . . . . . 7 1 = (0 + 1)
6159, 60breqtrdi 5146 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) / π) < (0 + 1))
62 btwnnz 12579 . . . . . 6 ((0 ∈ ℤ ∧ 0 < (((π / 2) − 𝐴) / π) ∧ (((π / 2) − 𝐴) / π) < (0 + 1)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6332, 43, 61, 62syl3anc 1371 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6431, 63syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6564pm2.01da 797 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
66 sineq0 25880 . . . . 5 (((π / 2) − 𝐴) ∈ ℂ → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈ ℤ))
678, 66syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈ ℤ))
6867necon3abid 2980 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) ≠ 0 ↔ ¬ (((π / 2) − 𝐴) / π) ∈ ℤ))
6965, 68mpbird 256 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘((π / 2) − 𝐴)) ≠ 0)
7011, 69eqnetrd 3011 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cz 12499  (,)cioo 13264  cre 14982  sincsin 15946  cosccos 15947  πcpi 15949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  tanord  25894  tanregt0  25895  atantan  26273  tan2h  36070  fourierdlem62  44399
  Copyright terms: Public domain W3C validator