MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosne0 Structured version   Visualization version   GIF version

Theorem cosne0 26438
Description: The cosine function has no zeroes within the vertical strip of the complex plane between real part -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
cosne0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)

Proof of Theorem cosne0
StepHypRef Expression
1 halfpire 26373 . . . . . 6 (π / 2) ∈ ℝ
21recni 11188 . . . . 5 (π / 2) ∈ ℂ
3 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ)
4 nncan 11451 . . . . 5 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
52, 3, 4sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
65fveq2d 6862 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (cos‘𝐴))
7 subcl 11420 . . . . 5 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ)
82, 3, 7sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((π / 2) − 𝐴) ∈ ℂ)
9 coshalfpim 26404 . . . 4 (((π / 2) − 𝐴) ∈ ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
108, 9syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2) − 𝐴)))
116, 10eqtr3d 2766 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴)))
125adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴)
13 picn 26367 . . . . . . . . . . . . 13 π ∈ ℂ
1413a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ∈ ℂ)
15 pire 26366 . . . . . . . . . . . . . 14 π ∈ ℝ
16 pipos 26368 . . . . . . . . . . . . . 14 0 < π
1715, 16gt0ne0ii 11714 . . . . . . . . . . . . 13 π ≠ 0
1817a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → π ≠ 0)
198, 14, 18divcan1d 11959 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2) − 𝐴))
2019adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2) − 𝐴))
21 zre 12533 . . . . . . . . . . . 12 ((((π / 2) − 𝐴) / π) ∈ ℤ → (((π / 2) − 𝐴) / π) ∈ ℝ)
2221adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (((π / 2) − 𝐴) / π) ∈ ℝ)
23 remulcl 11153 . . . . . . . . . . 11 (((((π / 2) − 𝐴) / π) ∈ ℝ ∧ π ∈ ℝ) → ((((π / 2) − 𝐴) / π) · π) ∈ ℝ)
2422, 15, 23sylancl 586 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π / 2) − 𝐴) / π) · π) ∈ ℝ)
2520, 24eqeltrrd 2829 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − 𝐴) ∈ ℝ)
26 resubcl 11486 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ ((π / 2) − 𝐴) ∈ ℝ) → ((π / 2) − ((π / 2) − 𝐴)) ∈ ℝ)
271, 25, 26sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2) − ((π / 2) − 𝐴)) ∈ ℝ)
2812, 27eqeltrrd 2829 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ ℝ)
2928rered 15190 . . . . . 6 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (ℜ‘𝐴) = 𝐴)
30 simplr 768 . . . . . 6 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
3129, 30eqeltrrd 2829 . . . . 5 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ (-(π / 2)(,)(π / 2)))
32 0zd 12541 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 ∈ ℤ)
33 elioore 13336 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ)
34 resubcl 11486 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
351, 33, 34sylancr 587 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ)
3615a1i 11 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → π ∈ ℝ)
37 eliooord 13366 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝐴𝐴 < (π / 2)))
3837simprd 495 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2))
39 posdif 11671 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
4033, 1, 39sylancl 586 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴)))
4138, 40mpbid 232 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴))
4216a1i 11 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < π)
4335, 36, 41, 42divgt0d 12118 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (((π / 2) − 𝐴) / π))
441a1i 11 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (π / 2) ∈ ℝ)
452negcli 11490 . . . . . . . . . . . 12 -(π / 2) ∈ ℂ
4613, 2negsubi 11500 . . . . . . . . . . . . 13 (π + -(π / 2)) = (π − (π / 2))
47 pidiv2halves 26376 . . . . . . . . . . . . . 14 ((π / 2) + (π / 2)) = π
4813, 2, 2, 47subaddrii 11511 . . . . . . . . . . . . 13 (π − (π / 2)) = (π / 2)
4946, 48eqtri 2752 . . . . . . . . . . . 12 (π + -(π / 2)) = (π / 2)
502, 13, 45, 49subaddrii 11511 . . . . . . . . . . 11 ((π / 2) − π) = -(π / 2)
5137simpld 494 . . . . . . . . . . 11 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴)
5250, 51eqbrtrid 5142 . . . . . . . . . 10 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴)
5344, 36, 33, 52ltsub23d 11783 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π)
5413mulridi 11178 . . . . . . . . 9 (π · 1) = π
5553, 54breqtrrdi 5149 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < (π · 1))
56 1red 11175 . . . . . . . . 9 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 1 ∈ ℝ)
57 ltdivmul 12058 . . . . . . . . 9 ((((π / 2) − 𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) − 𝐴) < (π · 1)))
5835, 56, 36, 42, 57syl112anc 1376 . . . . . . . 8 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) − 𝐴) < (π · 1)))
5955, 58mpbird 257 . . . . . . 7 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) / π) < 1)
60 1e0p1 12691 . . . . . . 7 1 = (0 + 1)
6159, 60breqtrdi 5148 . . . . . 6 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) / π) < (0 + 1))
62 btwnnz 12610 . . . . . 6 ((0 ∈ ℤ ∧ 0 < (((π / 2) − 𝐴) / π) ∧ (((π / 2) − 𝐴) / π) < (0 + 1)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6332, 43, 61, 62syl3anc 1373 . . . . 5 (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6431, 63syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
6564pm2.01da 798 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ)
66 sineq0 26433 . . . . 5 (((π / 2) − 𝐴) ∈ ℂ → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈ ℤ))
678, 66syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈ ℤ))
6867necon3abid 2961 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) ≠ 0 ↔ ¬ (((π / 2) − 𝐴) / π) ∈ ℤ))
6965, 68mpbird 257 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (sin‘((π / 2) − 𝐴)) ≠ 0)
7011, 69eqnetrd 2992 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  cz 12529  (,)cioo 13306  cre 15063  sincsin 16029  cosccos 16030  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  tanord  26447  tanregt0  26448  atantan  26833  tan2h  37606  fourierdlem62  46166
  Copyright terms: Public domain W3C validator