Proof of Theorem cosne0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | halfpire 26507 | . . . . . 6
⊢ (π /
2) ∈ ℝ | 
| 2 | 1 | recni 11276 | . . . . 5
⊢ (π /
2) ∈ ℂ | 
| 3 |  | simpl 482 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → 𝐴 ∈ ℂ) | 
| 4 |  | nncan 11539 | . . . . 5
⊢ (((π /
2) ∈ ℂ ∧ 𝐴
∈ ℂ) → ((π / 2) − ((π / 2) − 𝐴)) = 𝐴) | 
| 5 | 2, 3, 4 | sylancr 587 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → ((π / 2) − ((π / 2) −
𝐴)) = 𝐴) | 
| 6 | 5 | fveq2d 6909 | . . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2)
− 𝐴))) =
(cos‘𝐴)) | 
| 7 |  | subcl 11508 | . . . . 5
⊢ (((π /
2) ∈ ℂ ∧ 𝐴
∈ ℂ) → ((π / 2) − 𝐴) ∈ ℂ) | 
| 8 | 2, 3, 7 | sylancr 587 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → ((π / 2) − 𝐴) ∈ ℂ) | 
| 9 |  | coshalfpim 26538 | . . . 4
⊢ (((π /
2) − 𝐴) ∈
ℂ → (cos‘((π / 2) − ((π / 2) − 𝐴))) = (sin‘((π / 2)
− 𝐴))) | 
| 10 | 8, 9 | syl 17 | . . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → (cos‘((π / 2) − ((π / 2)
− 𝐴))) =
(sin‘((π / 2) − 𝐴))) | 
| 11 | 6, 10 | eqtr3d 2778 | . 2
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → (cos‘𝐴) = (sin‘((π / 2) − 𝐴))) | 
| 12 | 5 | adantr 480 | . . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2)
− ((π / 2) − 𝐴)) = 𝐴) | 
| 13 |  | picn 26502 | . . . . . . . . . . . . 13
⊢ π
∈ ℂ | 
| 14 | 13 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → π ∈ ℂ) | 
| 15 |  | pire 26501 | . . . . . . . . . . . . . 14
⊢ π
∈ ℝ | 
| 16 |  | pipos 26503 | . . . . . . . . . . . . . 14
⊢ 0 <
π | 
| 17 | 15, 16 | gt0ne0ii 11800 | . . . . . . . . . . . . 13
⊢ π ≠
0 | 
| 18 | 17 | a1i 11 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → π ≠ 0) | 
| 19 | 8, 14, 18 | divcan1d 12045 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → ((((π / 2) − 𝐴) / π) · π) = ((π / 2)
− 𝐴)) | 
| 20 | 19 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π /
2) − 𝐴) / π)
· π) = ((π / 2) − 𝐴)) | 
| 21 |  | zre 12619 | . . . . . . . . . . . 12
⊢ ((((π
/ 2) − 𝐴) / π)
∈ ℤ → (((π / 2) − 𝐴) / π) ∈ ℝ) | 
| 22 | 21 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → (((π /
2) − 𝐴) / π)
∈ ℝ) | 
| 23 |  | remulcl 11241 | . . . . . . . . . . 11
⊢ (((((π
/ 2) − 𝐴) / π)
∈ ℝ ∧ π ∈ ℝ) → ((((π / 2) − 𝐴) / π) · π) ∈
ℝ) | 
| 24 | 22, 15, 23 | sylancl 586 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((((π /
2) − 𝐴) / π)
· π) ∈ ℝ) | 
| 25 | 20, 24 | eqeltrrd 2841 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2)
− 𝐴) ∈
ℝ) | 
| 26 |  | resubcl 11574 | . . . . . . . . 9
⊢ (((π /
2) ∈ ℝ ∧ ((π / 2) − 𝐴) ∈ ℝ) → ((π / 2) −
((π / 2) − 𝐴))
∈ ℝ) | 
| 27 | 1, 25, 26 | sylancr 587 | . . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ((π / 2)
− ((π / 2) − 𝐴)) ∈ ℝ) | 
| 28 | 12, 27 | eqeltrrd 2841 | . . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈
ℝ) | 
| 29 | 28 | rered 15264 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) →
(ℜ‘𝐴) = 𝐴) | 
| 30 |  | simplr 768 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) →
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) | 
| 31 | 29, 30 | eqeltrrd 2841 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → 𝐴 ∈ (-(π / 2)(,)(π /
2))) | 
| 32 |  | 0zd 12627 | . . . . . 6
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 0 ∈ ℤ) | 
| 33 |  | elioore 13418 | . . . . . . . 8
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 ∈
ℝ) | 
| 34 |  | resubcl 11574 | . . . . . . . 8
⊢ (((π /
2) ∈ ℝ ∧ 𝐴
∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ) | 
| 35 | 1, 33, 34 | sylancr 587 | . . . . . . 7
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → ((π / 2) − 𝐴) ∈ ℝ) | 
| 36 | 15 | a1i 11 | . . . . . . 7
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → π ∈ ℝ) | 
| 37 |  | eliooord 13447 | . . . . . . . . 9
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (-(π / 2) < 𝐴 ∧ 𝐴 < (π / 2))) | 
| 38 | 37 | simprd 495 | . . . . . . . 8
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 𝐴 < (π /
2)) | 
| 39 |  | posdif 11757 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (π / 2)
∈ ℝ) → (𝐴
< (π / 2) ↔ 0 < ((π / 2) − 𝐴))) | 
| 40 | 33, 1, 39 | sylancl 586 | . . . . . . . 8
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (𝐴 < (π /
2) ↔ 0 < ((π / 2) − 𝐴))) | 
| 41 | 38, 40 | mpbid 232 | . . . . . . 7
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 0 < ((π / 2) − 𝐴)) | 
| 42 | 16 | a1i 11 | . . . . . . 7
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 0 < π) | 
| 43 | 35, 36, 41, 42 | divgt0d 12204 | . . . . . 6
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 0 < (((π / 2) − 𝐴) / π)) | 
| 44 | 1 | a1i 11 | . . . . . . . . . 10
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (π / 2) ∈ ℝ) | 
| 45 | 2 | negcli 11578 | . . . . . . . . . . . 12
⊢ -(π /
2) ∈ ℂ | 
| 46 | 13, 2 | negsubi 11588 | . . . . . . . . . . . . 13
⊢ (π +
-(π / 2)) = (π − (π / 2)) | 
| 47 |  | pidiv2halves 26510 | . . . . . . . . . . . . . 14
⊢ ((π /
2) + (π / 2)) = π | 
| 48 | 13, 2, 2, 47 | subaddrii 11599 | . . . . . . . . . . . . 13
⊢ (π
− (π / 2)) = (π / 2) | 
| 49 | 46, 48 | eqtri 2764 | . . . . . . . . . . . 12
⊢ (π +
-(π / 2)) = (π / 2) | 
| 50 | 2, 13, 45, 49 | subaddrii 11599 | . . . . . . . . . . 11
⊢ ((π /
2) − π) = -(π / 2) | 
| 51 | 37 | simpld 494 | . . . . . . . . . . 11
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → -(π / 2) < 𝐴) | 
| 52 | 50, 51 | eqbrtrid 5177 | . . . . . . . . . 10
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → ((π / 2) − π) < 𝐴) | 
| 53 | 44, 36, 33, 52 | ltsub23d 11869 | . . . . . . . . 9
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → ((π / 2) − 𝐴) < π) | 
| 54 | 13 | mulridi 11266 | . . . . . . . . 9
⊢ (π
· 1) = π | 
| 55 | 53, 54 | breqtrrdi 5184 | . . . . . . . 8
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → ((π / 2) − 𝐴) < (π · 1)) | 
| 56 |  | 1red 11263 | . . . . . . . . 9
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → 1 ∈ ℝ) | 
| 57 |  | ltdivmul 12144 | . . . . . . . . 9
⊢ ((((π
/ 2) − 𝐴) ∈
ℝ ∧ 1 ∈ ℝ ∧ (π ∈ ℝ ∧ 0 < π))
→ ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) −
𝐴) < (π ·
1))) | 
| 58 | 35, 56, 36, 42, 57 | syl112anc 1375 | . . . . . . . 8
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → ((((π / 2) − 𝐴) / π) < 1 ↔ ((π / 2) −
𝐴) < (π ·
1))) | 
| 59 | 55, 58 | mpbird 257 | . . . . . . 7
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (((π / 2) − 𝐴) / π) < 1) | 
| 60 |  | 1e0p1 12777 | . . . . . . 7
⊢ 1 = (0 +
1) | 
| 61 | 59, 60 | breqtrdi 5183 | . . . . . 6
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → (((π / 2) − 𝐴) / π) < (0 + 1)) | 
| 62 |  | btwnnz 12696 | . . . . . 6
⊢ ((0
∈ ℤ ∧ 0 < (((π / 2) − 𝐴) / π) ∧ (((π / 2) − 𝐴) / π) < (0 + 1)) →
¬ (((π / 2) − 𝐴) / π) ∈ ℤ) | 
| 63 | 32, 43, 61, 62 | syl3anc 1372 | . . . . 5
⊢ (𝐴 ∈ (-(π / 2)(,)(π /
2)) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ) | 
| 64 | 31, 63 | syl 17 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) ∧ (((π / 2) − 𝐴) / π) ∈ ℤ) → ¬
(((π / 2) − 𝐴) /
π) ∈ ℤ) | 
| 65 | 64 | pm2.01da 798 | . . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → ¬ (((π / 2) − 𝐴) / π) ∈ ℤ) | 
| 66 |  | sineq0 26567 | . . . . 5
⊢ (((π /
2) − 𝐴) ∈
ℂ → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2) − 𝐴) / π) ∈
ℤ)) | 
| 67 | 8, 66 | syl 17 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) = 0 ↔ (((π / 2)
− 𝐴) / π) ∈
ℤ)) | 
| 68 | 67 | necon3abid 2976 | . . 3
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → ((sin‘((π / 2) − 𝐴)) ≠ 0 ↔ ¬ (((π /
2) − 𝐴) / π)
∈ ℤ)) | 
| 69 | 65, 68 | mpbird 257 | . 2
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → (sin‘((π / 2) − 𝐴)) ≠ 0) | 
| 70 | 11, 69 | eqnetrd 3007 | 1
⊢ ((𝐴 ∈ ℂ ∧
(ℜ‘𝐴) ∈
(-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0) |