| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unbdqndv1 | Structured version Visualization version GIF version | ||
| Description: If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| Ref | Expression |
|---|---|
| unbdqndv1.g | ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) |
| unbdqndv1.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| unbdqndv1.2 | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| unbdqndv1.3 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| unbdqndv1.4 | ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
| Ref | Expression |
|---|---|
| unbdqndv1 | ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4288 | . . . . . . . 8 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅) |
| 3 | unbdqndv1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 4 | unbdqndv1.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 5 | 3, 4 | sstrd 3945 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ) |
| 7 | 6 | ssdifssd 4097 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ) |
| 8 | unbdqndv1.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ) |
| 10 | 4, 8, 3 | dvbss 25827 | . . . . . . . . . . 11 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
| 11 | 10 | sselda 3934 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ 𝑋) |
| 12 | 9, 6, 11 | dvlem 25822 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) ∈ ℂ) |
| 13 | unbdqndv1.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) | |
| 14 | 12, 13 | fmptd 7047 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ) |
| 15 | 6, 11 | sseldd 3935 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ) |
| 16 | unbdqndv1.4 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
| 18 | 7, 14, 15, 17 | unblimceq0 36540 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 limℂ 𝐴) = ∅) |
| 19 | 2, 18 | neleqtrrd 2854 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 limℂ 𝐴)) |
| 20 | 19 | intnand 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴))) |
| 21 | eqid 2731 | . . . . . . . 8 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 22 | eqid 2731 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 23 | 21, 22, 13, 4, 8, 3 | eldv 25824 | . . . . . . 7 ⊢ (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 24 | 23 | notbid 318 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 26 | 20, 25 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦) |
| 27 | 26 | alrimiv 1928 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦) |
| 28 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹)) | |
| 29 | eldmg 5838 | . . . . . 6 ⊢ (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) | |
| 30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 31 | 30 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 32 | alnex 1782 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 34 | 33 | bicomd 223 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
| 35 | 31, 34 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
| 36 | 27, 35 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| 37 | 36 | pm2.01da 798 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 < clt 11143 ≤ cle 11144 − cmin 11341 / cdiv 11771 ℝ+crp 12887 abscabs 15138 ↾t crest 17321 TopOpenctopn 17322 ℂfldccnfld 21289 intcnt 22930 limℂ climc 25788 D cdv 25789 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-rest 17323 df-topn 17324 df-topgen 17344 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-ntr 22933 df-cnp 23141 df-xms 24233 df-ms 24234 df-limc 25792 df-dv 25793 |
| This theorem is referenced by: unbdqndv2 36544 |
| Copyright terms: Public domain | W3C validator |