| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unbdqndv1 | Structured version Visualization version GIF version | ||
| Description: If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| Ref | Expression |
|---|---|
| unbdqndv1.g | ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) |
| unbdqndv1.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| unbdqndv1.2 | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| unbdqndv1.3 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| unbdqndv1.4 | ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
| Ref | Expression |
|---|---|
| unbdqndv1 | ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . . . . . 8 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅) |
| 3 | unbdqndv1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 4 | unbdqndv1.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 5 | 3, 4 | sstrd 3941 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ) |
| 7 | 6 | ssdifssd 4096 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ) |
| 8 | unbdqndv1.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ) |
| 10 | 4, 8, 3 | dvbss 25830 | . . . . . . . . . . 11 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
| 11 | 10 | sselda 3930 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ 𝑋) |
| 12 | 9, 6, 11 | dvlem 25825 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) ∈ ℂ) |
| 13 | unbdqndv1.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) | |
| 14 | 12, 13 | fmptd 7053 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ) |
| 15 | 6, 11 | sseldd 3931 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ) |
| 16 | unbdqndv1.4 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
| 18 | 7, 14, 15, 17 | unblimceq0 36572 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 limℂ 𝐴) = ∅) |
| 19 | 2, 18 | neleqtrrd 2856 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 limℂ 𝐴)) |
| 20 | 19 | intnand 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴))) |
| 21 | eqid 2733 | . . . . . . . 8 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 22 | eqid 2733 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 23 | 21, 22, 13, 4, 8, 3 | eldv 25827 | . . . . . . 7 ⊢ (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 24 | 23 | notbid 318 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 26 | 20, 25 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦) |
| 27 | 26 | alrimiv 1928 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦) |
| 28 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹)) | |
| 29 | eldmg 5842 | . . . . . 6 ⊢ (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) | |
| 30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 31 | 30 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 32 | alnex 1782 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 34 | 33 | bicomd 223 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
| 35 | 31, 34 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
| 36 | 27, 35 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| 37 | 36 | pm2.01da 798 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 < clt 11153 ≤ cle 11154 − cmin 11351 / cdiv 11781 ℝ+crp 12892 abscabs 15143 ↾t crest 17326 TopOpenctopn 17327 ℂfldccnfld 21293 intcnt 22933 limℂ climc 25791 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-topn 17329 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-ntr 22936 df-cnp 23144 df-xms 24236 df-ms 24237 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: unbdqndv2 36576 |
| Copyright terms: Public domain | W3C validator |