Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv1 Structured version   Visualization version   GIF version

Theorem unbdqndv1 33404
Description: If the difference quotient (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv1.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv1.1 (𝜑𝑆 ⊆ ℂ)
unbdqndv1.2 (𝜑𝑋𝑆)
unbdqndv1.3 (𝜑𝐹:𝑋⟶ℂ)
unbdqndv1.4 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
Assertion
Ref Expression
unbdqndv1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑧,𝐴   𝐹,𝑏,𝑑,𝑥   𝑧,𝐹   𝐺,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝑧,𝑆   𝑋,𝑏,𝑑,𝑥   𝑧,𝑋   𝜑,𝑏,𝑑,𝑥   𝜑,𝑧
Allowed substitution hint:   𝐺(𝑧)

Proof of Theorem unbdqndv1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4177 . . . . . . . 8 ¬ 𝑦 ∈ ∅
21a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅)
3 unbdqndv1.2 . . . . . . . . . . 11 (𝜑𝑋𝑆)
4 unbdqndv1.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
53, 4sstrd 3861 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
65adantr 473 . . . . . . . . 9 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ)
76ssdifssd 4002 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ)
8 unbdqndv1.3 . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℂ)
98adantr 473 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ)
104, 8, 3dvbss 24217 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
1110sselda 3851 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴𝑋)
129, 6, 11dvlem 24212 . . . . . . . . 9 (((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) ∈ ℂ)
13 unbdqndv1.g . . . . . . . . 9 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
1412, 13fmptd 6699 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ)
156, 11sseldd 3852 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ)
16 unbdqndv1.4 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
1716adantr 473 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
187, 14, 15, 17unblimceq0 33403 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 lim 𝐴) = ∅)
192, 18neleqtrrd 2881 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 lim 𝐴))
2019intnand 481 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴)))
21 eqid 2771 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
22 eqid 2771 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2321, 22, 13, 4, 8, 3eldv 24214 . . . . . . 7 (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2423notbid 310 . . . . . 6 (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2524adantr 473 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2620, 25mpbird 249 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦)
2726alrimiv 1887 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)
28 simpr 477 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹))
29 eldmg 5613 . . . . . 6 (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3028, 29syl 17 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3130notbid 310 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
32 alnex 1745 . . . . . 6 (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)
3332a1i 11 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3433bicomd 215 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3531, 34bitrd 271 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3627, 35mpbird 249 . 2 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
3736pm2.01da 787 1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1506   = wceq 1508  wex 1743  wcel 2051  wral 3081  wrex 3082  cdif 3819  wss 3822  c0 4172  {csn 4435   class class class wbr 4925  cmpt 5004  dom cdm 5403  wf 6181  cfv 6185  (class class class)co 6974  cc 10331   < clt 10472  cle 10473  cmin 10668   / cdiv 11096  +crp 12202  abscabs 14452  t crest 16548  TopOpenctopn 16549  fldccnfld 20262  intcnt 21344   lim climc 24178   D cdv 24179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fi 8668  df-sup 8699  df-inf 8700  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-q 12161  df-rp 12203  df-xneg 12322  df-xadd 12323  df-xmul 12324  df-fz 12707  df-seq 13183  df-exp 13243  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-plusg 16432  df-mulr 16433  df-starv 16434  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-rest 16550  df-topn 16551  df-topgen 16571  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-ntr 21347  df-cnp 21555  df-xms 22648  df-ms 22649  df-limc 24182  df-dv 24183
This theorem is referenced by:  unbdqndv2  33407
  Copyright terms: Public domain W3C validator