Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv1 Structured version   Visualization version   GIF version

Theorem unbdqndv1 34382
Description: If the difference quotient (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv1.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv1.1 (𝜑𝑆 ⊆ ℂ)
unbdqndv1.2 (𝜑𝑋𝑆)
unbdqndv1.3 (𝜑𝐹:𝑋⟶ℂ)
unbdqndv1.4 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
Assertion
Ref Expression
unbdqndv1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑧,𝐴   𝐹,𝑏,𝑑,𝑥   𝑧,𝐹   𝐺,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝑧,𝑆   𝑋,𝑏,𝑑,𝑥   𝑧,𝑋   𝜑,𝑏,𝑑,𝑥   𝜑,𝑧
Allowed substitution hint:   𝐺(𝑧)

Proof of Theorem unbdqndv1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4235 . . . . . . . 8 ¬ 𝑦 ∈ ∅
21a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅)
3 unbdqndv1.2 . . . . . . . . . . 11 (𝜑𝑋𝑆)
4 unbdqndv1.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
53, 4sstrd 3901 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
65adantr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ)
76ssdifssd 4047 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ)
8 unbdqndv1.3 . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℂ)
98adantr 484 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ)
104, 8, 3dvbss 24770 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
1110sselda 3891 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴𝑋)
129, 6, 11dvlem 24765 . . . . . . . . 9 (((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) ∈ ℂ)
13 unbdqndv1.g . . . . . . . . 9 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
1412, 13fmptd 6920 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ)
156, 11sseldd 3892 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ)
16 unbdqndv1.4 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
1716adantr 484 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
187, 14, 15, 17unblimceq0 34381 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 lim 𝐴) = ∅)
192, 18neleqtrrd 2856 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 lim 𝐴))
2019intnand 492 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴)))
21 eqid 2734 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
22 eqid 2734 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2321, 22, 13, 4, 8, 3eldv 24767 . . . . . . 7 (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2423notbid 321 . . . . . 6 (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2524adantr 484 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2620, 25mpbird 260 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦)
2726alrimiv 1935 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)
28 simpr 488 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹))
29 eldmg 5756 . . . . . 6 (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3028, 29syl 17 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3130notbid 321 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
32 alnex 1789 . . . . . 6 (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)
3332a1i 11 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3433bicomd 226 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3531, 34bitrd 282 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3627, 35mpbird 260 . 2 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
3736pm2.01da 799 1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wex 1787  wcel 2110  wral 3054  wrex 3055  cdif 3854  wss 3857  c0 4227  {csn 4531   class class class wbr 5043  cmpt 5124  dom cdm 5540  wf 6365  cfv 6369  (class class class)co 7202  cc 10710   < clt 10850  cle 10851  cmin 11045   / cdiv 11472  +crp 12569  abscabs 14780  t crest 16897  TopOpenctopn 16898  fldccnfld 20335  intcnt 21886   lim climc 24731   D cdv 24732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-plusg 16780  df-mulr 16781  df-starv 16782  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-rest 16899  df-topn 16900  df-topgen 16920  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-ntr 21889  df-cnp 22097  df-xms 23190  df-ms 23191  df-limc 24735  df-dv 24736
This theorem is referenced by:  unbdqndv2  34385
  Copyright terms: Public domain W3C validator