Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv1 Structured version   Visualization version   GIF version

Theorem unbdqndv1 34688
Description: If the difference quotient (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv1.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv1.1 (𝜑𝑆 ⊆ ℂ)
unbdqndv1.2 (𝜑𝑋𝑆)
unbdqndv1.3 (𝜑𝐹:𝑋⟶ℂ)
unbdqndv1.4 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
Assertion
Ref Expression
unbdqndv1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑧,𝐴   𝐹,𝑏,𝑑,𝑥   𝑧,𝐹   𝐺,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝑧,𝑆   𝑋,𝑏,𝑑,𝑥   𝑧,𝑋   𝜑,𝑏,𝑑,𝑥   𝜑,𝑧
Allowed substitution hint:   𝐺(𝑧)

Proof of Theorem unbdqndv1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4264 . . . . . . . 8 ¬ 𝑦 ∈ ∅
21a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅)
3 unbdqndv1.2 . . . . . . . . . . 11 (𝜑𝑋𝑆)
4 unbdqndv1.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
53, 4sstrd 3931 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
65adantr 481 . . . . . . . . 9 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ)
76ssdifssd 4077 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ)
8 unbdqndv1.3 . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℂ)
98adantr 481 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ)
104, 8, 3dvbss 25065 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
1110sselda 3921 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴𝑋)
129, 6, 11dvlem 25060 . . . . . . . . 9 (((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) ∈ ℂ)
13 unbdqndv1.g . . . . . . . . 9 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
1412, 13fmptd 6988 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ)
156, 11sseldd 3922 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ)
16 unbdqndv1.4 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
1716adantr 481 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
187, 14, 15, 17unblimceq0 34687 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 lim 𝐴) = ∅)
192, 18neleqtrrd 2861 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 lim 𝐴))
2019intnand 489 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴)))
21 eqid 2738 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
22 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2321, 22, 13, 4, 8, 3eldv 25062 . . . . . . 7 (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2423notbid 318 . . . . . 6 (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2524adantr 481 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2620, 25mpbird 256 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦)
2726alrimiv 1930 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)
28 simpr 485 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹))
29 eldmg 5807 . . . . . 6 (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3028, 29syl 17 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3130notbid 318 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
32 alnex 1784 . . . . . 6 (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)
3332a1i 11 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3433bicomd 222 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3531, 34bitrd 278 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3627, 35mpbird 256 . 2 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
3736pm2.01da 796 1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  cdif 3884  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  +crp 12730  abscabs 14945  t crest 17131  TopOpenctopn 17132  fldccnfld 20597  intcnt 22168   lim climc 25026   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-ntr 22171  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030  df-dv 25031
This theorem is referenced by:  unbdqndv2  34691
  Copyright terms: Public domain W3C validator