| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unbdqndv1 | Structured version Visualization version GIF version | ||
| Description: If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
| Ref | Expression |
|---|---|
| unbdqndv1.g | ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) |
| unbdqndv1.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| unbdqndv1.2 | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| unbdqndv1.3 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| unbdqndv1.4 | ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
| Ref | Expression |
|---|---|
| unbdqndv1 | ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . . . . . . . 8 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅) |
| 3 | unbdqndv1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 4 | unbdqndv1.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 5 | 3, 4 | sstrd 3960 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ) |
| 7 | 6 | ssdifssd 4113 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ) |
| 8 | unbdqndv1.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ) |
| 10 | 4, 8, 3 | dvbss 25809 | . . . . . . . . . . 11 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
| 11 | 10 | sselda 3949 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ 𝑋) |
| 12 | 9, 6, 11 | dvlem 25804 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) ∈ ℂ) |
| 13 | unbdqndv1.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) | |
| 14 | 12, 13 | fmptd 7089 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ) |
| 15 | 6, 11 | sseldd 3950 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ) |
| 16 | unbdqndv1.4 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
| 18 | 7, 14, 15, 17 | unblimceq0 36502 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 limℂ 𝐴) = ∅) |
| 19 | 2, 18 | neleqtrrd 2852 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 limℂ 𝐴)) |
| 20 | 19 | intnand 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴))) |
| 21 | eqid 2730 | . . . . . . . 8 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
| 22 | eqid 2730 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 23 | 21, 22, 13, 4, 8, 3 | eldv 25806 | . . . . . . 7 ⊢ (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 24 | 23 | notbid 318 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
| 26 | 20, 25 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦) |
| 27 | 26 | alrimiv 1927 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦) |
| 28 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹)) | |
| 29 | eldmg 5865 | . . . . . 6 ⊢ (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) | |
| 30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 31 | 30 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 32 | alnex 1781 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
| 34 | 33 | bicomd 223 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
| 35 | 31, 34 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
| 36 | 27, 35 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| 37 | 36 | pm2.01da 798 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℝ+crp 12958 abscabs 15207 ↾t crest 17390 TopOpenctopn 17391 ℂfldccnfld 21271 intcnt 22911 limℂ climc 25770 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-rest 17392 df-topn 17393 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-ntr 22914 df-cnp 23122 df-xms 24215 df-ms 24216 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: unbdqndv2 36506 |
| Copyright terms: Public domain | W3C validator |