Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv1 Structured version   Visualization version   GIF version

Theorem unbdqndv1 36531
Description: If the difference quotient (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv1.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv1.1 (𝜑𝑆 ⊆ ℂ)
unbdqndv1.2 (𝜑𝑋𝑆)
unbdqndv1.3 (𝜑𝐹:𝑋⟶ℂ)
unbdqndv1.4 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
Assertion
Ref Expression
unbdqndv1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥   𝑧,𝐴   𝐹,𝑏,𝑑,𝑥   𝑧,𝐹   𝐺,𝑏,𝑑,𝑥   𝑆,𝑏,𝑑,𝑥   𝑧,𝑆   𝑋,𝑏,𝑑,𝑥   𝑧,𝑋   𝜑,𝑏,𝑑,𝑥   𝜑,𝑧
Allowed substitution hint:   𝐺(𝑧)

Proof of Theorem unbdqndv1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4318 . . . . . . . 8 ¬ 𝑦 ∈ ∅
21a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅)
3 unbdqndv1.2 . . . . . . . . . . 11 (𝜑𝑋𝑆)
4 unbdqndv1.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
53, 4sstrd 3974 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
65adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ)
76ssdifssd 4127 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ)
8 unbdqndv1.3 . . . . . . . . . . 11 (𝜑𝐹:𝑋⟶ℂ)
98adantr 480 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ)
104, 8, 3dvbss 25859 . . . . . . . . . . 11 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
1110sselda 3963 . . . . . . . . . 10 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴𝑋)
129, 6, 11dvlem 25854 . . . . . . . . 9 (((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) ∈ ℂ)
13 unbdqndv1.g . . . . . . . . 9 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
1412, 13fmptd 7109 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ)
156, 11sseldd 3964 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ)
16 unbdqndv1.4 . . . . . . . . 9 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
1716adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))
187, 14, 15, 17unblimceq0 36530 . . . . . . 7 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 lim 𝐴) = ∅)
192, 18neleqtrrd 2858 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 lim 𝐴))
2019intnand 488 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴)))
21 eqid 2736 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
22 eqid 2736 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2321, 22, 13, 4, 8, 3eldv 25856 . . . . . . 7 (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2423notbid 318 . . . . . 6 (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2524adantr 480 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 lim 𝐴))))
2620, 25mpbird 257 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦)
2726alrimiv 1927 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)
28 simpr 484 . . . . . 6 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹))
29 eldmg 5883 . . . . . 6 (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3028, 29syl 17 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3130notbid 318 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
32 alnex 1781 . . . . . 6 (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)
3332a1i 11 . . . . 5 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦))
3433bicomd 223 . . . 4 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3531, 34bitrd 279 . . 3 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦))
3627, 35mpbird 257 . 2 ((𝜑𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
3736pm2.01da 798 1 (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  cdif 3928  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cc 11132   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  +crp 13013  abscabs 15258  t crest 17439  TopOpenctopn 17440  fldccnfld 21320  intcnt 22960   lim climc 25820   D cdv 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-cnp 23171  df-xms 24264  df-ms 24265  df-limc 25824  df-dv 25825
This theorem is referenced by:  unbdqndv2  36534
  Copyright terms: Public domain W3C validator