![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unbdqndv1 | Structured version Visualization version GIF version |
Description: If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
Ref | Expression |
---|---|
unbdqndv1.g | ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) |
unbdqndv1.1 | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
unbdqndv1.2 | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
unbdqndv1.3 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
unbdqndv1.4 | ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
Ref | Expression |
---|---|
unbdqndv1 | ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4344 | . . . . . . . 8 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ ∅) |
3 | unbdqndv1.2 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
4 | unbdqndv1.1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
5 | 3, 4 | sstrd 4006 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝑋 ⊆ ℂ) |
7 | 6 | ssdifssd 4157 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝑋 ∖ {𝐴}) ⊆ ℂ) |
8 | unbdqndv1.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
9 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐹:𝑋⟶ℂ) |
10 | 4, 8, 3 | dvbss 25951 | . . . . . . . . . . 11 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
11 | 10 | sselda 3995 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ 𝑋) |
12 | 9, 6, 11 | dvlem 25946 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) ∧ 𝑧 ∈ (𝑋 ∖ {𝐴})) → (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) ∈ ℂ) |
13 | unbdqndv1.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) | |
14 | 12, 13 | fmptd 7134 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐺:(𝑋 ∖ {𝐴})⟶ℂ) |
15 | 6, 11 | sseldd 3996 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ ℂ) |
16 | unbdqndv1.4 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) | |
17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) |
18 | 7, 14, 15, 17 | unblimceq0 36490 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐺 limℂ 𝐴) = ∅) |
19 | 2, 18 | neleqtrrd 2862 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝑦 ∈ (𝐺 limℂ 𝐴)) |
20 | 19 | intnand 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴))) |
21 | eqid 2735 | . . . . . . . 8 ⊢ ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆) | |
22 | eqid 2735 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
23 | 21, 22, 13, 4, 8, 3 | eldv 25948 | . . . . . . 7 ⊢ (𝜑 → (𝐴(𝑆 D 𝐹)𝑦 ↔ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
24 | 23 | notbid 318 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ (𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ∧ 𝑦 ∈ (𝐺 limℂ 𝐴)))) |
26 | 20, 25 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴(𝑆 D 𝐹)𝑦) |
27 | 26 | alrimiv 1925 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦) |
28 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → 𝐴 ∈ dom (𝑆 D 𝐹)) | |
29 | eldmg 5912 | . . . . . 6 ⊢ (𝐴 ∈ dom (𝑆 D 𝐹) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) | |
30 | 28, 29 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
31 | 30 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
32 | alnex 1778 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦) | |
33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦 ↔ ¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦)) |
34 | 33 | bicomd 223 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ ∃𝑦 𝐴(𝑆 D 𝐹)𝑦 ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
35 | 31, 34 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → (¬ 𝐴 ∈ dom (𝑆 D 𝐹) ↔ ∀𝑦 ¬ 𝐴(𝑆 D 𝐹)𝑦)) |
36 | 27, 35 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ dom (𝑆 D 𝐹)) → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
37 | 36 | pm2.01da 799 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 < clt 11293 ≤ cle 11294 − cmin 11490 / cdiv 11918 ℝ+crp 13032 abscabs 15270 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 intcnt 23041 limℂ climc 25912 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17469 df-topn 17470 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-ntr 23044 df-cnp 23252 df-xms 24346 df-ms 24347 df-limc 25916 df-dv 25917 |
This theorem is referenced by: unbdqndv2 36494 |
Copyright terms: Public domain | W3C validator |