| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > footne | Structured version Visualization version GIF version | ||
| Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.) |
| Ref | Expression |
|---|---|
| isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
| isperp.d | ⊢ − = (dist‘𝐺) |
| isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| footne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| footne.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| footne.1 | ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) |
| Ref | Expression |
|---|---|
| footne | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isperp.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | isperp.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | isperp.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | isperp.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐺 ∈ TarskiG) |
| 6 | isperp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐴 ∈ ran 𝐿) |
| 8 | footne.1 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) | |
| 9 | 3, 4, 8 | perpln1 28655 | . . . . 5 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| 11 | isperp.d | . . . . . . 7 ⊢ − = (dist‘𝐺) | |
| 12 | 1, 11, 2, 3, 4, 9, 6, 8 | perpneq 28659 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐿𝑌) ≠ 𝐴) |
| 13 | 12 | necomd 2980 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ (𝑋𝐿𝑌)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐴 ≠ (𝑋𝐿𝑌)) |
| 15 | footne.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
| 17 | 1, 3, 2, 4, 6, 15 | tglnpt 28494 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 18 | footne.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 19 | 1, 2, 3, 4, 17, 18, 9 | tglnne 28573 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| 20 | 1, 2, 3, 4, 17, 18, 19 | tglinerflx1 28578 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑋𝐿𝑌)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (𝑋𝐿𝑌)) |
| 22 | 16, 21 | elind 4151 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (𝐴 ∩ (𝑋𝐿𝑌))) |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) | |
| 24 | 1, 2, 3, 4, 17, 18, 19 | tglinerflx2 28579 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐿𝑌)) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (𝑋𝐿𝑌)) |
| 26 | 23, 25 | elind 4151 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (𝐴 ∩ (𝑋𝐿𝑌))) |
| 27 | 1, 2, 3, 5, 7, 10, 14, 22, 26 | tglineineq 28588 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 = 𝑌) |
| 28 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) |
| 29 | 27, 28 | pm2.21ddne 3009 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → ¬ 𝑌 ∈ 𝐴) |
| 30 | 29 | pm2.01da 798 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ran crn 5620 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 ⟂Gcperpg 28640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-cgrg 28456 df-mir 28598 df-rag 28639 df-perpg 28641 |
| This theorem is referenced by: footeq 28669 hlperpnel 28670 oppperpex 28698 |
| Copyright terms: Public domain | W3C validator |