| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > footne | Structured version Visualization version GIF version | ||
| Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.) |
| Ref | Expression |
|---|---|
| isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
| isperp.d | ⊢ − = (dist‘𝐺) |
| isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| footne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| footne.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| footne.1 | ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) |
| Ref | Expression |
|---|---|
| footne | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isperp.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | isperp.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | isperp.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | isperp.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐺 ∈ TarskiG) |
| 6 | isperp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐴 ∈ ran 𝐿) |
| 8 | footne.1 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) | |
| 9 | 3, 4, 8 | perpln1 28688 | . . . . 5 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑋𝐿𝑌) ∈ ran 𝐿) |
| 11 | isperp.d | . . . . . . 7 ⊢ − = (dist‘𝐺) | |
| 12 | 1, 11, 2, 3, 4, 9, 6, 8 | perpneq 28692 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐿𝑌) ≠ 𝐴) |
| 13 | 12 | necomd 2983 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ (𝑋𝐿𝑌)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐴 ≠ (𝑋𝐿𝑌)) |
| 15 | footne.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
| 17 | 1, 3, 2, 4, 6, 15 | tglnpt 28527 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 18 | footne.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 19 | 1, 2, 3, 4, 17, 18, 9 | tglnne 28606 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| 20 | 1, 2, 3, 4, 17, 18, 19 | tglinerflx1 28611 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑋𝐿𝑌)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (𝑋𝐿𝑌)) |
| 22 | 16, 21 | elind 4147 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (𝐴 ∩ (𝑋𝐿𝑌))) |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) | |
| 24 | 1, 2, 3, 4, 17, 18, 19 | tglinerflx2 28612 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐿𝑌)) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (𝑋𝐿𝑌)) |
| 26 | 23, 25 | elind 4147 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (𝐴 ∩ (𝑋𝐿𝑌))) |
| 27 | 1, 2, 3, 5, 7, 10, 14, 22, 26 | tglineineq 28621 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 = 𝑌) |
| 28 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) |
| 29 | 27, 28 | pm2.21ddne 3012 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → ¬ 𝑌 ∈ 𝐴) |
| 30 | 29 | pm2.01da 798 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ran crn 5615 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 TarskiGcstrkg 28405 Itvcitv 28411 LineGclng 28412 ⟂Gcperpg 28673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28426 df-trkgb 28427 df-trkgcb 28428 df-trkg 28431 df-cgrg 28489 df-mir 28631 df-rag 28672 df-perpg 28674 |
| This theorem is referenced by: footeq 28702 hlperpnel 28703 oppperpex 28731 |
| Copyright terms: Public domain | W3C validator |