Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  footne Structured version   Visualization version   GIF version

Theorem footne 26039
 Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
footne.x (𝜑𝑋𝐴)
footne.y (𝜑𝑌𝑃)
footne.1 (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴)
Assertion
Ref Expression
footne (𝜑 → ¬ 𝑌𝐴)

Proof of Theorem footne
StepHypRef Expression
1 isperp.p . . . 4 𝑃 = (Base‘𝐺)
2 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
3 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
4 isperp.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 474 . . . 4 ((𝜑𝑌𝐴) → 𝐺 ∈ TarskiG)
6 isperp.a . . . . 5 (𝜑𝐴 ∈ ran 𝐿)
76adantr 474 . . . 4 ((𝜑𝑌𝐴) → 𝐴 ∈ ran 𝐿)
8 footne.1 . . . . . 6 (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴)
93, 4, 8perpln1 26029 . . . . 5 (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿)
109adantr 474 . . . 4 ((𝜑𝑌𝐴) → (𝑋𝐿𝑌) ∈ ran 𝐿)
11 isperp.d . . . . . . 7 = (dist‘𝐺)
121, 11, 2, 3, 4, 9, 6, 8perpneq 26033 . . . . . 6 (𝜑 → (𝑋𝐿𝑌) ≠ 𝐴)
1312necomd 3054 . . . . 5 (𝜑𝐴 ≠ (𝑋𝐿𝑌))
1413adantr 474 . . . 4 ((𝜑𝑌𝐴) → 𝐴 ≠ (𝑋𝐿𝑌))
15 footne.x . . . . . 6 (𝜑𝑋𝐴)
1615adantr 474 . . . . 5 ((𝜑𝑌𝐴) → 𝑋𝐴)
171, 3, 2, 4, 6, 15tglnpt 25868 . . . . . . 7 (𝜑𝑋𝑃)
18 footne.y . . . . . . 7 (𝜑𝑌𝑃)
191, 2, 3, 4, 17, 18, 9tglnne 25947 . . . . . . 7 (𝜑𝑋𝑌)
201, 2, 3, 4, 17, 18, 19tglinerflx1 25952 . . . . . 6 (𝜑𝑋 ∈ (𝑋𝐿𝑌))
2120adantr 474 . . . . 5 ((𝜑𝑌𝐴) → 𝑋 ∈ (𝑋𝐿𝑌))
2216, 21elind 4027 . . . 4 ((𝜑𝑌𝐴) → 𝑋 ∈ (𝐴 ∩ (𝑋𝐿𝑌)))
23 simpr 479 . . . . 5 ((𝜑𝑌𝐴) → 𝑌𝐴)
241, 2, 3, 4, 17, 18, 19tglinerflx2 25953 . . . . . 6 (𝜑𝑌 ∈ (𝑋𝐿𝑌))
2524adantr 474 . . . . 5 ((𝜑𝑌𝐴) → 𝑌 ∈ (𝑋𝐿𝑌))
2623, 25elind 4027 . . . 4 ((𝜑𝑌𝐴) → 𝑌 ∈ (𝐴 ∩ (𝑋𝐿𝑌)))
271, 2, 3, 5, 7, 10, 14, 22, 26tglineineq 25962 . . 3 ((𝜑𝑌𝐴) → 𝑋 = 𝑌)
2819adantr 474 . . 3 ((𝜑𝑌𝐴) → 𝑋𝑌)
2927, 28pm2.21ddne 3083 . 2 ((𝜑𝑌𝐴) → ¬ 𝑌𝐴)
3029pm2.01da 833 1 (𝜑 → ¬ 𝑌𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 386   = wceq 1656   ∈ wcel 2164   ≠ wne 2999   class class class wbr 4875  ran crn 5347  ‘cfv 6127  (class class class)co 6910  Basecbs 16229  distcds 16321  TarskiGcstrkg 25749  Itvcitv 25755  LineGclng 25756  ⟂Gcperpg 26014 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-hash 13418  df-word 13582  df-concat 13638  df-s1 13663  df-s2 13976  df-s3 13977  df-trkgc 25767  df-trkgb 25768  df-trkgcb 25769  df-trkg 25772  df-cgrg 25830  df-mir 25972  df-rag 26013  df-perpg 26015 This theorem is referenced by:  footeq  26040  hlperpnel  26041  oppperpex  26069
 Copyright terms: Public domain W3C validator