Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > footne | Structured version Visualization version GIF version |
Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.) |
Ref | Expression |
---|---|
isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
isperp.d | ⊢ − = (dist‘𝐺) |
isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
footne.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
footne.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
footne.1 | ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) |
Ref | Expression |
---|---|
footne | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isperp.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | isperp.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | isperp.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | isperp.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐺 ∈ TarskiG) |
6 | isperp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐴 ∈ ran 𝐿) |
8 | footne.1 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴) | |
9 | 3, 4, 8 | perpln1 27361 | . . . . 5 ⊢ (𝜑 → (𝑋𝐿𝑌) ∈ ran 𝐿) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑋𝐿𝑌) ∈ ran 𝐿) |
11 | isperp.d | . . . . . . 7 ⊢ − = (dist‘𝐺) | |
12 | 1, 11, 2, 3, 4, 9, 6, 8 | perpneq 27365 | . . . . . 6 ⊢ (𝜑 → (𝑋𝐿𝑌) ≠ 𝐴) |
13 | 12 | necomd 2996 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ (𝑋𝐿𝑌)) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝐴 ≠ (𝑋𝐿𝑌)) |
15 | footne.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
16 | 15 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
17 | 1, 3, 2, 4, 6, 15 | tglnpt 27200 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
18 | footne.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
19 | 1, 2, 3, 4, 17, 18, 9 | tglnne 27279 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
20 | 1, 2, 3, 4, 17, 18, 19 | tglinerflx1 27284 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑋𝐿𝑌)) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (𝑋𝐿𝑌)) |
22 | 16, 21 | elind 4142 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ (𝐴 ∩ (𝑋𝐿𝑌))) |
23 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) | |
24 | 1, 2, 3, 4, 17, 18, 19 | tglinerflx2 27285 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐿𝑌)) |
25 | 24 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (𝑋𝐿𝑌)) |
26 | 23, 25 | elind 4142 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ (𝐴 ∩ (𝑋𝐿𝑌))) |
27 | 1, 2, 3, 5, 7, 10, 14, 22, 26 | tglineineq 27294 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 = 𝑌) |
28 | 19 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → 𝑋 ≠ 𝑌) |
29 | 27, 28 | pm2.21ddne 3026 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → ¬ 𝑌 ∈ 𝐴) |
30 | 29 | pm2.01da 796 | 1 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5093 ran crn 5622 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 distcds 17069 TarskiGcstrkg 27078 Itvcitv 27084 LineGclng 27085 ⟂Gcperpg 27346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-oadd 8372 df-er 8570 df-map 8689 df-pm 8690 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-n0 12336 df-xnn0 12408 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-hash 14147 df-word 14319 df-concat 14375 df-s1 14401 df-s2 14661 df-s3 14662 df-trkgc 27099 df-trkgb 27100 df-trkgcb 27101 df-trkg 27104 df-cgrg 27162 df-mir 27304 df-rag 27345 df-perpg 27347 |
This theorem is referenced by: footeq 27375 hlperpnel 27376 oppperpex 27404 |
Copyright terms: Public domain | W3C validator |