MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Structured version   Visualization version   GIF version

Theorem cfslb2n 10305
Description: Any small collection of small subsets of 𝐴 cannot have union 𝐴, where "small" means smaller than the cofinality. This is a stronger version of cfslb 10303. This is a common application of cofinality: under AC, (ℵ‘1) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb2n ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cfslb2n
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6445 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
2 ordsson 7801 . . . . . . . . . 10 (Ord 𝐴𝐴 ⊆ On)
3 sstr 4003 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
43expcom 413 . . . . . . . . . 10 (𝐴 ⊆ On → (𝑥𝐴𝑥 ⊆ On))
51, 2, 43syl 18 . . . . . . . . 9 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ On))
6 onsucuni 7847 . . . . . . . . 9 (𝑥 ⊆ On → 𝑥 ⊆ suc 𝑥)
75, 6syl6 35 . . . . . . . 8 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ suc 𝑥))
87adantrd 491 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥 ⊆ suc 𝑥))
98ralimdv 3166 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 𝑥 ⊆ suc 𝑥))
10 uniiun 5062 . . . . . . 7 𝐵 = 𝑥𝐵 𝑥
11 ss2iun 5014 . . . . . . 7 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝑥𝐵 𝑥 𝑥𝐵 suc 𝑥)
1210, 11eqsstrid 4043 . . . . . 6 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝐵 𝑥𝐵 suc 𝑥)
139, 12syl6 35 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝐵 𝑥𝐵 suc 𝑥))
1413imp 406 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝐵 𝑥𝐵 suc 𝑥)
15 cfslb.1 . . . . . . . . . 10 𝐴 ∈ V
1615cfslbn 10304 . . . . . . . . 9 ((Lim 𝐴𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴)
17163expib 1121 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴))
18 ordsucss 7837 . . . . . . . 8 (Ord 𝐴 → ( 𝑥𝐴 → suc 𝑥𝐴))
191, 17, 18sylsyld 61 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
2019ralimdv 3166 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
21 iunss 5049 . . . . . 6 ( 𝑥𝐵 suc 𝑥𝐴 ↔ ∀𝑥𝐵 suc 𝑥𝐴)
2220, 21imbitrrdi 252 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐵 suc 𝑥𝐴))
2322imp 406 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝑥𝐵 suc 𝑥𝐴)
24 sseq1 4020 . . . . . 6 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥))
25 eqss 4010 . . . . . . 7 ( 𝑥𝐵 suc 𝑥 = 𝐴 ↔ ( 𝑥𝐵 suc 𝑥𝐴𝐴 𝑥𝐵 suc 𝑥))
2625simplbi2com 502 . . . . . 6 (𝐴 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
2724, 26biimtrdi 253 . . . . 5 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2827com3l 89 . . . 4 ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2914, 23, 28sylc 65 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
30 limsuc 7869 . . . . . . . . 9 (Lim 𝐴 → ( 𝑥𝐴 ↔ suc 𝑥𝐴))
3117, 30sylibd 239 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
3231ralimdv 3166 . . . . . . 7 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
3332imp 406 . . . . . 6 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ∀𝑥𝐵 suc 𝑥𝐴)
34 r19.29 3111 . . . . . . . 8 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → ∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥))
35 eleq1 2826 . . . . . . . . . 10 (𝑦 = suc 𝑥 → (𝑦𝐴 ↔ suc 𝑥𝐴))
3635biimparc 479 . . . . . . . . 9 ((suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3736rexlimivw 3148 . . . . . . . 8 (∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3834, 37syl 17 . . . . . . 7 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → 𝑦𝐴)
3938ex 412 . . . . . 6 (∀𝑥𝐵 suc 𝑥𝐴 → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4033, 39syl 17 . . . . 5 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4140abssdv 4077 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴)
42 vuniex 7757 . . . . . . . 8 𝑥 ∈ V
4342sucex 7825 . . . . . . 7 suc 𝑥 ∈ V
4443dfiun2 5037 . . . . . 6 𝑥𝐵 suc 𝑥 = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
4544eqeq1i 2739 . . . . 5 ( 𝑥𝐵 suc 𝑥 = 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴)
4615cfslb 10303 . . . . . 6 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴) → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥})
47463expia 1120 . . . . 5 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4845, 47biimtrid 242 . . . 4 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4941, 48syldan 591 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
50 eqid 2734 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥) = (𝑥𝐵 ↦ suc 𝑥)
5150rnmpt 5970 . . . . . . . 8 ran (𝑥𝐵 ↦ suc 𝑥) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
5243, 50fnmpti 6711 . . . . . . . . . 10 (𝑥𝐵 ↦ suc 𝑥) Fn 𝐵
53 dffn4 6826 . . . . . . . . . 10 ((𝑥𝐵 ↦ suc 𝑥) Fn 𝐵 ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥))
5452, 53mpbi 230 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)
55 relsdom 8990 . . . . . . . . . . 11 Rel ≺
5655brrelex1i 5744 . . . . . . . . . 10 (𝐵 ≺ (cf‘𝐴) → 𝐵 ∈ V)
57 breq1 5150 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦 ≺ (cf‘𝐴) ↔ 𝐵 ≺ (cf‘𝐴)))
58 foeq2 6817 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)))
59 breq2 5151 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦 ↔ ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
6058, 59imbi12d 344 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦) ↔ ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6157, 60imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦)) ↔ (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))))
62 cfon 10292 . . . . . . . . . . . . 13 (cf‘𝐴) ∈ On
63 sdomdom 9018 . . . . . . . . . . . . 13 (𝑦 ≺ (cf‘𝐴) → 𝑦 ≼ (cf‘𝐴))
64 ondomen 10074 . . . . . . . . . . . . 13 (((cf‘𝐴) ∈ On ∧ 𝑦 ≼ (cf‘𝐴)) → 𝑦 ∈ dom card)
6562, 63, 64sylancr 587 . . . . . . . . . . . 12 (𝑦 ≺ (cf‘𝐴) → 𝑦 ∈ dom card)
66 fodomnum 10094 . . . . . . . . . . . 12 (𝑦 ∈ dom card → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6765, 66syl 17 . . . . . . . . . . 11 (𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6861, 67vtoclg 3553 . . . . . . . . . 10 (𝐵 ∈ V → (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6956, 68mpcom 38 . . . . . . . . 9 (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
7054, 69mpi 20 . . . . . . . 8 (𝐵 ≺ (cf‘𝐴) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)
7151, 70eqbrtrrid 5183 . . . . . . 7 (𝐵 ≺ (cf‘𝐴) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵)
72 domtr 9045 . . . . . . 7 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵) → (cf‘𝐴) ≼ 𝐵)
7371, 72sylan2 593 . . . . . 6 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → (cf‘𝐴) ≼ 𝐵)
74 domnsym 9137 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
7573, 74syl 17 . . . . 5 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → ¬ 𝐵 ≺ (cf‘𝐴))
7675pm2.01da 799 . . . 4 ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴))
7776a1i 11 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴)))
7829, 49, 773syld 60 . 2 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
7978necon2ad 2952 1 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  Vcvv 3477  wss 3962   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387   Fn wfn 6557  ontowfo 6560  cfv 6562  cdom 8981  csdm 8982  cardccrd 9972  cfccf 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-card 9976  df-cf 9978  df-acn 9979
This theorem is referenced by:  tskuni  10820
  Copyright terms: Public domain W3C validator