MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Structured version   Visualization version   GIF version

Theorem cfslb2n 9682
Description: Any small collection of small subsets of 𝐴 cannot have union 𝐴, where "small" means smaller than the cofinality. This is a stronger version of cfslb 9680. This is a common application of cofinality: under AC, (ℵ‘1) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb2n ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cfslb2n
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6243 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
2 ordsson 7496 . . . . . . . . . 10 (Ord 𝐴𝐴 ⊆ On)
3 sstr 3973 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
43expcom 416 . . . . . . . . . 10 (𝐴 ⊆ On → (𝑥𝐴𝑥 ⊆ On))
51, 2, 43syl 18 . . . . . . . . 9 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ On))
6 onsucuni 7535 . . . . . . . . 9 (𝑥 ⊆ On → 𝑥 ⊆ suc 𝑥)
75, 6syl6 35 . . . . . . . 8 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ suc 𝑥))
87adantrd 494 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥 ⊆ suc 𝑥))
98ralimdv 3176 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 𝑥 ⊆ suc 𝑥))
10 uniiun 4973 . . . . . . 7 𝐵 = 𝑥𝐵 𝑥
11 ss2iun 4928 . . . . . . 7 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝑥𝐵 𝑥 𝑥𝐵 suc 𝑥)
1210, 11eqsstrid 4013 . . . . . 6 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝐵 𝑥𝐵 suc 𝑥)
139, 12syl6 35 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝐵 𝑥𝐵 suc 𝑥))
1413imp 409 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝐵 𝑥𝐵 suc 𝑥)
15 cfslb.1 . . . . . . . . . 10 𝐴 ∈ V
1615cfslbn 9681 . . . . . . . . 9 ((Lim 𝐴𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴)
17163expib 1117 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴))
18 ordsucss 7525 . . . . . . . 8 (Ord 𝐴 → ( 𝑥𝐴 → suc 𝑥𝐴))
191, 17, 18sylsyld 61 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
2019ralimdv 3176 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
21 iunss 4960 . . . . . 6 ( 𝑥𝐵 suc 𝑥𝐴 ↔ ∀𝑥𝐵 suc 𝑥𝐴)
2220, 21syl6ibr 254 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐵 suc 𝑥𝐴))
2322imp 409 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝑥𝐵 suc 𝑥𝐴)
24 sseq1 3990 . . . . . 6 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥))
25 eqss 3980 . . . . . . 7 ( 𝑥𝐵 suc 𝑥 = 𝐴 ↔ ( 𝑥𝐵 suc 𝑥𝐴𝐴 𝑥𝐵 suc 𝑥))
2625simplbi2com 505 . . . . . 6 (𝐴 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
2724, 26syl6bi 255 . . . . 5 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2827com3l 89 . . . 4 ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2914, 23, 28sylc 65 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
30 limsuc 7556 . . . . . . . . 9 (Lim 𝐴 → ( 𝑥𝐴 ↔ suc 𝑥𝐴))
3117, 30sylibd 241 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
3231ralimdv 3176 . . . . . . 7 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
3332imp 409 . . . . . 6 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ∀𝑥𝐵 suc 𝑥𝐴)
34 r19.29 3252 . . . . . . . 8 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → ∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥))
35 eleq1 2898 . . . . . . . . . 10 (𝑦 = suc 𝑥 → (𝑦𝐴 ↔ suc 𝑥𝐴))
3635biimparc 482 . . . . . . . . 9 ((suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3736rexlimivw 3280 . . . . . . . 8 (∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3834, 37syl 17 . . . . . . 7 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → 𝑦𝐴)
3938ex 415 . . . . . 6 (∀𝑥𝐵 suc 𝑥𝐴 → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4033, 39syl 17 . . . . 5 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4140abssdv 4043 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴)
42 vuniex 7457 . . . . . . . 8 𝑥 ∈ V
4342sucex 7518 . . . . . . 7 suc 𝑥 ∈ V
4443dfiun2 4949 . . . . . 6 𝑥𝐵 suc 𝑥 = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
4544eqeq1i 2824 . . . . 5 ( 𝑥𝐵 suc 𝑥 = 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴)
4615cfslb 9680 . . . . . 6 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴) → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥})
47463expia 1116 . . . . 5 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4845, 47syl5bi 244 . . . 4 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4941, 48syldan 593 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
50 eqid 2819 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥) = (𝑥𝐵 ↦ suc 𝑥)
5150rnmpt 5820 . . . . . . . 8 ran (𝑥𝐵 ↦ suc 𝑥) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
5243, 50fnmpti 6484 . . . . . . . . . 10 (𝑥𝐵 ↦ suc 𝑥) Fn 𝐵
53 dffn4 6589 . . . . . . . . . 10 ((𝑥𝐵 ↦ suc 𝑥) Fn 𝐵 ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥))
5452, 53mpbi 232 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)
55 relsdom 8508 . . . . . . . . . . 11 Rel ≺
5655brrelex1i 5601 . . . . . . . . . 10 (𝐵 ≺ (cf‘𝐴) → 𝐵 ∈ V)
57 breq1 5060 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦 ≺ (cf‘𝐴) ↔ 𝐵 ≺ (cf‘𝐴)))
58 foeq2 6580 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)))
59 breq2 5061 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦 ↔ ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
6058, 59imbi12d 347 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦) ↔ ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6157, 60imbi12d 347 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦)) ↔ (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))))
62 cfon 9669 . . . . . . . . . . . . 13 (cf‘𝐴) ∈ On
63 sdomdom 8529 . . . . . . . . . . . . 13 (𝑦 ≺ (cf‘𝐴) → 𝑦 ≼ (cf‘𝐴))
64 ondomen 9455 . . . . . . . . . . . . 13 (((cf‘𝐴) ∈ On ∧ 𝑦 ≼ (cf‘𝐴)) → 𝑦 ∈ dom card)
6562, 63, 64sylancr 589 . . . . . . . . . . . 12 (𝑦 ≺ (cf‘𝐴) → 𝑦 ∈ dom card)
66 fodomnum 9475 . . . . . . . . . . . 12 (𝑦 ∈ dom card → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6765, 66syl 17 . . . . . . . . . . 11 (𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6861, 67vtoclg 3566 . . . . . . . . . 10 (𝐵 ∈ V → (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6956, 68mpcom 38 . . . . . . . . 9 (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
7054, 69mpi 20 . . . . . . . 8 (𝐵 ≺ (cf‘𝐴) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)
7151, 70eqbrtrrid 5093 . . . . . . 7 (𝐵 ≺ (cf‘𝐴) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵)
72 domtr 8554 . . . . . . 7 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵) → (cf‘𝐴) ≼ 𝐵)
7371, 72sylan2 594 . . . . . 6 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → (cf‘𝐴) ≼ 𝐵)
74 domnsym 8635 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
7573, 74syl 17 . . . . 5 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → ¬ 𝐵 ≺ (cf‘𝐴))
7675pm2.01da 797 . . . 4 ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴))
7776a1i 11 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴)))
7829, 49, 773syld 60 . 2 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
7978necon2ad 3029 1 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1531  wcel 2108  {cab 2797  wne 3014  wral 3136  wrex 3137  Vcvv 3493  wss 3934   cuni 4830   ciun 4910   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  Ord word 6183  Oncon0 6184  Lim wlim 6185  suc csuc 6186   Fn wfn 6343  ontowfo 6346  cfv 6348  cdom 8499  csdm 8500  cardccrd 9356  cfccf 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-card 9360  df-cf 9362  df-acn 9363
This theorem is referenced by:  tskuni  10197
  Copyright terms: Public domain W3C validator