MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Structured version   Visualization version   GIF version

Theorem cfslb2n 10197
Description: Any small collection of small subsets of 𝐴 cannot have union 𝐴, where "small" means smaller than the cofinality. This is a stronger version of cfslb 10195. This is a common application of cofinality: under AC, (ℵ‘1) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslb2n ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cfslb2n
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6381 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
2 ordsson 7739 . . . . . . . . . 10 (Ord 𝐴𝐴 ⊆ On)
3 sstr 3952 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
43expcom 413 . . . . . . . . . 10 (𝐴 ⊆ On → (𝑥𝐴𝑥 ⊆ On))
51, 2, 43syl 18 . . . . . . . . 9 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ On))
6 onsucuni 7783 . . . . . . . . 9 (𝑥 ⊆ On → 𝑥 ⊆ suc 𝑥)
75, 6syl6 35 . . . . . . . 8 (Lim 𝐴 → (𝑥𝐴𝑥 ⊆ suc 𝑥))
87adantrd 491 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥 ⊆ suc 𝑥))
98ralimdv 3147 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 𝑥 ⊆ suc 𝑥))
10 uniiun 5017 . . . . . . 7 𝐵 = 𝑥𝐵 𝑥
11 ss2iun 4970 . . . . . . 7 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝑥𝐵 𝑥 𝑥𝐵 suc 𝑥)
1210, 11eqsstrid 3982 . . . . . 6 (∀𝑥𝐵 𝑥 ⊆ suc 𝑥 𝐵 𝑥𝐵 suc 𝑥)
139, 12syl6 35 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝐵 𝑥𝐵 suc 𝑥))
1413imp 406 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝐵 𝑥𝐵 suc 𝑥)
15 cfslb.1 . . . . . . . . . 10 𝐴 ∈ V
1615cfslbn 10196 . . . . . . . . 9 ((Lim 𝐴𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴)
17163expib 1122 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐴))
18 ordsucss 7773 . . . . . . . 8 (Ord 𝐴 → ( 𝑥𝐴 → suc 𝑥𝐴))
191, 17, 18sylsyld 61 . . . . . . 7 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
2019ralimdv 3147 . . . . . 6 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
21 iunss 5004 . . . . . 6 ( 𝑥𝐵 suc 𝑥𝐴 ↔ ∀𝑥𝐵 suc 𝑥𝐴)
2220, 21imbitrrdi 252 . . . . 5 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → 𝑥𝐵 suc 𝑥𝐴))
2322imp 406 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → 𝑥𝐵 suc 𝑥𝐴)
24 sseq1 3969 . . . . . 6 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥))
25 eqss 3959 . . . . . . 7 ( 𝑥𝐵 suc 𝑥 = 𝐴 ↔ ( 𝑥𝐵 suc 𝑥𝐴𝐴 𝑥𝐵 suc 𝑥))
2625simplbi2com 502 . . . . . 6 (𝐴 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
2724, 26biimtrdi 253 . . . . 5 ( 𝐵 = 𝐴 → ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2827com3l 89 . . . 4 ( 𝐵 𝑥𝐵 suc 𝑥 → ( 𝑥𝐵 suc 𝑥𝐴 → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴)))
2914, 23, 28sylc 65 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 𝑥𝐵 suc 𝑥 = 𝐴))
30 limsuc 7805 . . . . . . . . 9 (Lim 𝐴 → ( 𝑥𝐴 ↔ suc 𝑥𝐴))
3117, 30sylibd 239 . . . . . . . 8 (Lim 𝐴 → ((𝑥𝐴𝑥 ≺ (cf‘𝐴)) → suc 𝑥𝐴))
3231ralimdv 3147 . . . . . . 7 (Lim 𝐴 → (∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴)) → ∀𝑥𝐵 suc 𝑥𝐴))
3332imp 406 . . . . . 6 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ∀𝑥𝐵 suc 𝑥𝐴)
34 r19.29 3094 . . . . . . . 8 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → ∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥))
35 eleq1 2816 . . . . . . . . . 10 (𝑦 = suc 𝑥 → (𝑦𝐴 ↔ suc 𝑥𝐴))
3635biimparc 479 . . . . . . . . 9 ((suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3736rexlimivw 3130 . . . . . . . 8 (∃𝑥𝐵 (suc 𝑥𝐴𝑦 = suc 𝑥) → 𝑦𝐴)
3834, 37syl 17 . . . . . . 7 ((∀𝑥𝐵 suc 𝑥𝐴 ∧ ∃𝑥𝐵 𝑦 = suc 𝑥) → 𝑦𝐴)
3938ex 412 . . . . . 6 (∀𝑥𝐵 suc 𝑥𝐴 → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4033, 39syl 17 . . . . 5 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (∃𝑥𝐵 𝑦 = suc 𝑥𝑦𝐴))
4140abssdv 4028 . . . 4 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴)
42 vuniex 7695 . . . . . . . 8 𝑥 ∈ V
4342sucex 7762 . . . . . . 7 suc 𝑥 ∈ V
4443dfiun2 4992 . . . . . 6 𝑥𝐵 suc 𝑥 = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
4544eqeq1i 2734 . . . . 5 ( 𝑥𝐵 suc 𝑥 = 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴)
4615cfslb 10195 . . . . . 6 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴 {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴) → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥})
47463expia 1121 . . . . 5 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4845, 47biimtrid 242 . . . 4 ((Lim 𝐴 ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ⊆ 𝐴) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
4941, 48syldan 591 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝑥𝐵 suc 𝑥 = 𝐴 → (cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}))
50 eqid 2729 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥) = (𝑥𝐵 ↦ suc 𝑥)
5150rnmpt 5910 . . . . . . . 8 ran (𝑥𝐵 ↦ suc 𝑥) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥}
5243, 50fnmpti 6643 . . . . . . . . . 10 (𝑥𝐵 ↦ suc 𝑥) Fn 𝐵
53 dffn4 6760 . . . . . . . . . 10 ((𝑥𝐵 ↦ suc 𝑥) Fn 𝐵 ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥))
5452, 53mpbi 230 . . . . . . . . 9 (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)
55 relsdom 8902 . . . . . . . . . . 11 Rel ≺
5655brrelex1i 5687 . . . . . . . . . 10 (𝐵 ≺ (cf‘𝐴) → 𝐵 ∈ V)
57 breq1 5105 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦 ≺ (cf‘𝐴) ↔ 𝐵 ≺ (cf‘𝐴)))
58 foeq2 6751 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) ↔ (𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥)))
59 breq2 5106 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦 ↔ ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
6058, 59imbi12d 344 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦) ↔ ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6157, 60imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦)) ↔ (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))))
62 cfon 10184 . . . . . . . . . . . . 13 (cf‘𝐴) ∈ On
63 sdomdom 8928 . . . . . . . . . . . . 13 (𝑦 ≺ (cf‘𝐴) → 𝑦 ≼ (cf‘𝐴))
64 ondomen 9966 . . . . . . . . . . . . 13 (((cf‘𝐴) ∈ On ∧ 𝑦 ≼ (cf‘𝐴)) → 𝑦 ∈ dom card)
6562, 63, 64sylancr 587 . . . . . . . . . . . 12 (𝑦 ≺ (cf‘𝐴) → 𝑦 ∈ dom card)
66 fodomnum 9986 . . . . . . . . . . . 12 (𝑦 ∈ dom card → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6765, 66syl 17 . . . . . . . . . . 11 (𝑦 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝑦onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝑦))
6861, 67vtoclg 3517 . . . . . . . . . 10 (𝐵 ∈ V → (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)))
6956, 68mpcom 38 . . . . . . . . 9 (𝐵 ≺ (cf‘𝐴) → ((𝑥𝐵 ↦ suc 𝑥):𝐵onto→ran (𝑥𝐵 ↦ suc 𝑥) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵))
7054, 69mpi 20 . . . . . . . 8 (𝐵 ≺ (cf‘𝐴) → ran (𝑥𝐵 ↦ suc 𝑥) ≼ 𝐵)
7151, 70eqbrtrrid 5138 . . . . . . 7 (𝐵 ≺ (cf‘𝐴) → {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵)
72 domtr 8955 . . . . . . 7 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ≼ 𝐵) → (cf‘𝐴) ≼ 𝐵)
7371, 72sylan2 593 . . . . . 6 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → (cf‘𝐴) ≼ 𝐵)
74 domnsym 9044 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
7573, 74syl 17 . . . . 5 (((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} ∧ 𝐵 ≺ (cf‘𝐴)) → ¬ 𝐵 ≺ (cf‘𝐴))
7675pm2.01da 798 . . . 4 ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴))
7776a1i 11 . . 3 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ((cf‘𝐴) ≼ {𝑦 ∣ ∃𝑥𝐵 𝑦 = suc 𝑥} → ¬ 𝐵 ≺ (cf‘𝐴)))
7829, 49, 773syld 60 . 2 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
7978necon2ad 2940 1 ((Lim 𝐴 ∧ ∀𝑥𝐵 (𝑥𝐴𝑥 ≺ (cf‘𝐴))) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322   Fn wfn 6494  ontowfo 6497  cfv 6499  cdom 8893  csdm 8894  cardccrd 9864  cfccf 9866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868  df-cf 9870  df-acn 9871
This theorem is referenced by:  tskuni  10712
  Copyright terms: Public domain W3C validator