Step | Hyp | Ref
| Expression |
1 | | limord 6421 |
. . . . . . . . . 10
β’ (Lim
π΄ β Ord π΄) |
2 | | ordsson 7766 |
. . . . . . . . . 10
β’ (Ord
π΄ β π΄ β On) |
3 | | sstr 3989 |
. . . . . . . . . . 11
β’ ((π₯ β π΄ β§ π΄ β On) β π₯ β On) |
4 | 3 | expcom 414 |
. . . . . . . . . 10
β’ (π΄ β On β (π₯ β π΄ β π₯ β On)) |
5 | 1, 2, 4 | 3syl 18 |
. . . . . . . . 9
β’ (Lim
π΄ β (π₯ β π΄ β π₯ β On)) |
6 | | onsucuni 7812 |
. . . . . . . . 9
β’ (π₯ β On β π₯ β suc βͺ π₯) |
7 | 5, 6 | syl6 35 |
. . . . . . . 8
β’ (Lim
π΄ β (π₯ β π΄ β π₯ β suc βͺ
π₯)) |
8 | 7 | adantrd 492 |
. . . . . . 7
β’ (Lim
π΄ β ((π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β π₯ β suc βͺ
π₯)) |
9 | 8 | ralimdv 3169 |
. . . . . 6
β’ (Lim
π΄ β (βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βπ₯ β π΅ π₯ β suc βͺ
π₯)) |
10 | | uniiun 5060 |
. . . . . . 7
β’ βͺ π΅ =
βͺ π₯ β π΅ π₯ |
11 | | ss2iun 5014 |
. . . . . . 7
β’
(βπ₯ β
π΅ π₯ β suc βͺ
π₯ β βͺ π₯ β π΅ π₯ β βͺ
π₯ β π΅ suc βͺ π₯) |
12 | 10, 11 | eqsstrid 4029 |
. . . . . 6
β’
(βπ₯ β
π΅ π₯ β suc βͺ
π₯ β βͺ π΅
β βͺ π₯ β π΅ suc βͺ π₯) |
13 | 9, 12 | syl6 35 |
. . . . 5
β’ (Lim
π΄ β (βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βͺ π΅ β βͺ π₯ β π΅ suc βͺ π₯)) |
14 | 13 | imp 407 |
. . . 4
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β βͺ
π΅ β βͺ π₯ β π΅ suc βͺ π₯) |
15 | | cfslb.1 |
. . . . . . . . . 10
β’ π΄ β V |
16 | 15 | cfslbn 10258 |
. . . . . . . . 9
β’ ((Lim
π΄ β§ π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βͺ π₯ β π΄) |
17 | 16 | 3expib 1122 |
. . . . . . . 8
β’ (Lim
π΄ β ((π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βͺ π₯ β π΄)) |
18 | | ordsucss 7802 |
. . . . . . . 8
β’ (Ord
π΄ β (βͺ π₯
β π΄ β suc βͺ π₯
β π΄)) |
19 | 1, 17, 18 | sylsyld 61 |
. . . . . . 7
β’ (Lim
π΄ β ((π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β suc βͺ
π₯ β π΄)) |
20 | 19 | ralimdv 3169 |
. . . . . 6
β’ (Lim
π΄ β (βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βπ₯ β π΅ suc βͺ π₯ β π΄)) |
21 | | iunss 5047 |
. . . . . 6
β’ (βͺ π₯ β π΅ suc βͺ π₯ β π΄ β βπ₯ β π΅ suc βͺ π₯ β π΄) |
22 | 20, 21 | syl6ibr 251 |
. . . . 5
β’ (Lim
π΄ β (βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βͺ π₯ β π΅ suc βͺ π₯ β π΄)) |
23 | 22 | imp 407 |
. . . 4
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β βͺ π₯ β π΅ suc βͺ π₯ β π΄) |
24 | | sseq1 4006 |
. . . . . 6
β’ (βͺ π΅ =
π΄ β (βͺ π΅
β βͺ π₯ β π΅ suc βͺ π₯ β π΄ β βͺ
π₯ β π΅ suc βͺ π₯)) |
25 | | eqss 3996 |
. . . . . . 7
β’ (βͺ π₯ β π΅ suc βͺ π₯ = π΄ β (βͺ
π₯ β π΅ suc βͺ π₯ β π΄ β§ π΄ β βͺ
π₯ β π΅ suc βͺ π₯)) |
26 | 25 | simplbi2com 503 |
. . . . . 6
β’ (π΄ β βͺ π₯ β π΅ suc βͺ π₯ β (βͺ π₯ β π΅ suc βͺ π₯ β π΄ β βͺ
π₯ β π΅ suc βͺ π₯ = π΄)) |
27 | 24, 26 | syl6bi 252 |
. . . . 5
β’ (βͺ π΅ =
π΄ β (βͺ π΅
β βͺ π₯ β π΅ suc βͺ π₯ β (βͺ π₯ β π΅ suc βͺ π₯ β π΄ β βͺ
π₯ β π΅ suc βͺ π₯ = π΄))) |
28 | 27 | com3l 89 |
. . . 4
β’ (βͺ π΅
β βͺ π₯ β π΅ suc βͺ π₯ β (βͺ π₯ β π΅ suc βͺ π₯ β π΄ β (βͺ π΅ = π΄ β βͺ
π₯ β π΅ suc βͺ π₯ = π΄))) |
29 | 14, 23, 28 | sylc 65 |
. . 3
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β (βͺ
π΅ = π΄ β βͺ
π₯ β π΅ suc βͺ π₯ = π΄)) |
30 | | limsuc 7834 |
. . . . . . . . 9
β’ (Lim
π΄ β (βͺ π₯
β π΄ β suc βͺ π₯
β π΄)) |
31 | 17, 30 | sylibd 238 |
. . . . . . . 8
β’ (Lim
π΄ β ((π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β suc βͺ
π₯ β π΄)) |
32 | 31 | ralimdv 3169 |
. . . . . . 7
β’ (Lim
π΄ β (βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄)) β βπ₯ β π΅ suc βͺ π₯ β π΄)) |
33 | 32 | imp 407 |
. . . . . 6
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β βπ₯ β π΅ suc βͺ π₯ β π΄) |
34 | | r19.29 3114 |
. . . . . . . 8
β’
((βπ₯ β
π΅ suc βͺ π₯
β π΄ β§ βπ₯ β π΅ π¦ = suc βͺ π₯) β βπ₯ β π΅ (suc βͺ π₯ β π΄ β§ π¦ = suc βͺ π₯)) |
35 | | eleq1 2821 |
. . . . . . . . . 10
β’ (π¦ = suc βͺ π₯
β (π¦ β π΄ β suc βͺ π₯
β π΄)) |
36 | 35 | biimparc 480 |
. . . . . . . . 9
β’ ((suc
βͺ π₯ β π΄ β§ π¦ = suc βͺ π₯) β π¦ β π΄) |
37 | 36 | rexlimivw 3151 |
. . . . . . . 8
β’
(βπ₯ β
π΅ (suc βͺ π₯
β π΄ β§ π¦ = suc βͺ π₯)
β π¦ β π΄) |
38 | 34, 37 | syl 17 |
. . . . . . 7
β’
((βπ₯ β
π΅ suc βͺ π₯
β π΄ β§ βπ₯ β π΅ π¦ = suc βͺ π₯) β π¦ β π΄) |
39 | 38 | ex 413 |
. . . . . 6
β’
(βπ₯ β
π΅ suc βͺ π₯
β π΄ β
(βπ₯ β π΅ π¦ = suc βͺ π₯ β π¦ β π΄)) |
40 | 33, 39 | syl 17 |
. . . . 5
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β (βπ₯ β π΅ π¦ = suc βͺ π₯ β π¦ β π΄)) |
41 | 40 | abssdv 4064 |
. . . 4
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} β π΄) |
42 | | vuniex 7725 |
. . . . . . . 8
β’ βͺ π₯
β V |
43 | 42 | sucex 7790 |
. . . . . . 7
β’ suc βͺ π₯
β V |
44 | 43 | dfiun2 5035 |
. . . . . 6
β’ βͺ π₯ β π΅ suc βͺ π₯ = βͺ
{π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} |
45 | 44 | eqeq1i 2737 |
. . . . 5
β’ (βͺ π₯ β π΅ suc βͺ π₯ = π΄ β βͺ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} = π΄) |
46 | 15 | cfslb 10257 |
. . . . . 6
β’ ((Lim
π΄ β§ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} β π΄ β§ βͺ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} = π΄) β (cfβπ΄) βΌ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯}) |
47 | 46 | 3expia 1121 |
. . . . 5
β’ ((Lim
π΄ β§ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} β π΄) β (βͺ
{π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} = π΄ β (cfβπ΄) βΌ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯})) |
48 | 45, 47 | biimtrid 241 |
. . . 4
β’ ((Lim
π΄ β§ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} β π΄) β (βͺ π₯ β π΅ suc βͺ π₯ = π΄ β (cfβπ΄) βΌ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯})) |
49 | 41, 48 | syldan 591 |
. . 3
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β (βͺ π₯ β π΅ suc βͺ π₯ = π΄ β (cfβπ΄) βΌ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯})) |
50 | | eqid 2732 |
. . . . . . . . 9
β’ (π₯ β π΅ β¦ suc βͺ
π₯) = (π₯ β π΅ β¦ suc βͺ
π₯) |
51 | 50 | rnmpt 5952 |
. . . . . . . 8
β’ ran
(π₯ β π΅ β¦ suc βͺ
π₯) = {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} |
52 | 43, 50 | fnmpti 6690 |
. . . . . . . . . 10
β’ (π₯ β π΅ β¦ suc βͺ
π₯) Fn π΅ |
53 | | dffn4 6808 |
. . . . . . . . . 10
β’ ((π₯ β π΅ β¦ suc βͺ
π₯) Fn π΅ β (π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯)) |
54 | 52, 53 | mpbi 229 |
. . . . . . . . 9
β’ (π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) |
55 | | relsdom 8942 |
. . . . . . . . . . 11
β’ Rel
βΊ |
56 | 55 | brrelex1i 5730 |
. . . . . . . . . 10
β’ (π΅ βΊ (cfβπ΄) β π΅ β V) |
57 | | breq1 5150 |
. . . . . . . . . . . 12
β’ (π¦ = π΅ β (π¦ βΊ (cfβπ΄) β π΅ βΊ (cfβπ΄))) |
58 | | foeq2 6799 |
. . . . . . . . . . . . 13
β’ (π¦ = π΅ β ((π₯ β π΅ β¦ suc βͺ
π₯):π¦βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β (π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯))) |
59 | | breq2 5151 |
. . . . . . . . . . . . 13
β’ (π¦ = π΅ β (ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π¦ β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π΅)) |
60 | 58, 59 | imbi12d 344 |
. . . . . . . . . . . 12
β’ (π¦ = π΅ β (((π₯ β π΅ β¦ suc βͺ
π₯):π¦βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π¦) β ((π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π΅))) |
61 | 57, 60 | imbi12d 344 |
. . . . . . . . . . 11
β’ (π¦ = π΅ β ((π¦ βΊ (cfβπ΄) β ((π₯ β π΅ β¦ suc βͺ
π₯):π¦βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π¦)) β (π΅ βΊ (cfβπ΄) β ((π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π΅)))) |
62 | | cfon 10246 |
. . . . . . . . . . . . 13
β’
(cfβπ΄) β
On |
63 | | sdomdom 8972 |
. . . . . . . . . . . . 13
β’ (π¦ βΊ (cfβπ΄) β π¦ βΌ (cfβπ΄)) |
64 | | ondomen 10028 |
. . . . . . . . . . . . 13
β’
(((cfβπ΄)
β On β§ π¦ βΌ
(cfβπ΄)) β π¦ β dom
card) |
65 | 62, 63, 64 | sylancr 587 |
. . . . . . . . . . . 12
β’ (π¦ βΊ (cfβπ΄) β π¦ β dom card) |
66 | | fodomnum 10048 |
. . . . . . . . . . . 12
β’ (π¦ β dom card β ((π₯ β π΅ β¦ suc βͺ
π₯):π¦βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π¦)) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . 11
β’ (π¦ βΊ (cfβπ΄) β ((π₯ β π΅ β¦ suc βͺ
π₯):π¦βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π¦)) |
68 | 61, 67 | vtoclg 3556 |
. . . . . . . . . 10
β’ (π΅ β V β (π΅ βΊ (cfβπ΄) β ((π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π΅))) |
69 | 56, 68 | mpcom 38 |
. . . . . . . . 9
β’ (π΅ βΊ (cfβπ΄) β ((π₯ β π΅ β¦ suc βͺ
π₯):π΅βontoβran (π₯ β π΅ β¦ suc βͺ
π₯) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π΅)) |
70 | 54, 69 | mpi 20 |
. . . . . . . 8
β’ (π΅ βΊ (cfβπ΄) β ran (π₯ β π΅ β¦ suc βͺ
π₯) βΌ π΅) |
71 | 51, 70 | eqbrtrrid 5183 |
. . . . . . 7
β’ (π΅ βΊ (cfβπ΄) β {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} βΌ π΅) |
72 | | domtr 8999 |
. . . . . . 7
β’
(((cfβπ΄)
βΌ {π¦ β£
βπ₯ β π΅ π¦ = suc βͺ π₯} β§ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} βΌ π΅) β (cfβπ΄) βΌ π΅) |
73 | 71, 72 | sylan2 593 |
. . . . . 6
β’
(((cfβπ΄)
βΌ {π¦ β£
βπ₯ β π΅ π¦ = suc βͺ π₯} β§ π΅ βΊ (cfβπ΄)) β (cfβπ΄) βΌ π΅) |
74 | | domnsym 9095 |
. . . . . 6
β’
((cfβπ΄)
βΌ π΅ β Β¬
π΅ βΊ (cfβπ΄)) |
75 | 73, 74 | syl 17 |
. . . . 5
β’
(((cfβπ΄)
βΌ {π¦ β£
βπ₯ β π΅ π¦ = suc βͺ π₯} β§ π΅ βΊ (cfβπ΄)) β Β¬ π΅ βΊ (cfβπ΄)) |
76 | 75 | pm2.01da 797 |
. . . 4
β’
((cfβπ΄)
βΌ {π¦ β£
βπ₯ β π΅ π¦ = suc βͺ π₯} β Β¬ π΅ βΊ (cfβπ΄)) |
77 | 76 | a1i 11 |
. . 3
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β ((cfβπ΄) βΌ {π¦ β£ βπ₯ β π΅ π¦ = suc βͺ π₯} β Β¬ π΅ βΊ (cfβπ΄))) |
78 | 29, 49, 77 | 3syld 60 |
. 2
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β (βͺ
π΅ = π΄ β Β¬ π΅ βΊ (cfβπ΄))) |
79 | 78 | necon2ad 2955 |
1
β’ ((Lim
π΄ β§ βπ₯ β π΅ (π₯ β π΄ β§ π₯ βΊ (cfβπ΄))) β (π΅ βΊ (cfβπ΄) β βͺ π΅ β π΄)) |