MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsnlplig Structured version   Visualization version   GIF version

Theorem nsnlplig 30410
Description: There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.)
Assertion
Ref Expression
nsnlplig (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺)

Proof of Theorem nsnlplig
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 𝐺 = 𝐺
21l2p 30408 . . 3 ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}))
3 elsni 4606 . . . . . . . 8 (𝑎 ∈ {𝐴} → 𝑎 = 𝐴)
4 elsni 4606 . . . . . . . 8 (𝑏 ∈ {𝐴} → 𝑏 = 𝐴)
5 eqtr3 2751 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐴) → 𝑎 = 𝑏)
6 eqneqall 2936 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎𝑏 → ¬ {𝐴} ∈ 𝐺))
75, 6syl 17 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐴) → (𝑎𝑏 → ¬ {𝐴} ∈ 𝐺))
83, 4, 7syl2an 596 . . . . . . 7 ((𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → (𝑎𝑏 → ¬ {𝐴} ∈ 𝐺))
98impcom 407 . . . . . 6 ((𝑎𝑏 ∧ (𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) → ¬ {𝐴} ∈ 𝐺)
1093impb 1114 . . . . 5 ((𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺)
1110a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺))
1211rexlimivv 3179 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺)
132, 12syl 17 . 2 ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ¬ {𝐴} ∈ 𝐺)
1413pm2.01da 798 1 (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {csn 4589   cuni 4871  Pligcplig 30403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-v 3449  df-ss 3931  df-sn 4590  df-uni 4872  df-plig 30404
This theorem is referenced by:  n0lplig  30412
  Copyright terms: Public domain W3C validator