Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsnlplig | Structured version Visualization version GIF version |
Description: There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.) |
Ref | Expression |
---|---|
nsnlplig | ⊢ (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
2 | 1 | l2p 28742 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) |
3 | elsni 4575 | . . . . . . . 8 ⊢ (𝑎 ∈ {𝐴} → 𝑎 = 𝐴) | |
4 | elsni 4575 | . . . . . . . 8 ⊢ (𝑏 ∈ {𝐴} → 𝑏 = 𝐴) | |
5 | eqtr3 2764 | . . . . . . . . 9 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐴) → 𝑎 = 𝑏) | |
6 | eqneqall 2953 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (𝑎 ≠ 𝑏 → ¬ {𝐴} ∈ 𝐺)) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐴) → (𝑎 ≠ 𝑏 → ¬ {𝐴} ∈ 𝐺)) |
8 | 3, 4, 7 | syl2an 595 | . . . . . . 7 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → (𝑎 ≠ 𝑏 → ¬ {𝐴} ∈ 𝐺)) |
9 | 8 | impcom 407 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ (𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) → ¬ {𝐴} ∈ 𝐺) |
10 | 9 | 3impb 1113 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺)) |
12 | 11 | rexlimivv 3220 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺) |
13 | 2, 12 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ¬ {𝐴} ∈ 𝐺) |
14 | 13 | pm2.01da 795 | 1 ⊢ (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {csn 4558 ∪ cuni 4836 Pligcplig 28737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 df-uni 4837 df-plig 28738 |
This theorem is referenced by: n0lplig 28746 |
Copyright terms: Public domain | W3C validator |