MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsnlplig Structured version   Visualization version   GIF version

Theorem nsnlplig 30510
Description: There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.)
Assertion
Ref Expression
nsnlplig (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺)

Proof of Theorem nsnlplig
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 𝐺 = 𝐺
21l2p 30508 . . 3 ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}))
3 elsni 4648 . . . . . . . 8 (𝑎 ∈ {𝐴} → 𝑎 = 𝐴)
4 elsni 4648 . . . . . . . 8 (𝑏 ∈ {𝐴} → 𝑏 = 𝐴)
5 eqtr3 2761 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐴) → 𝑎 = 𝑏)
6 eqneqall 2949 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎𝑏 → ¬ {𝐴} ∈ 𝐺))
75, 6syl 17 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐴) → (𝑎𝑏 → ¬ {𝐴} ∈ 𝐺))
83, 4, 7syl2an 596 . . . . . . 7 ((𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → (𝑎𝑏 → ¬ {𝐴} ∈ 𝐺))
98impcom 407 . . . . . 6 ((𝑎𝑏 ∧ (𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) → ¬ {𝐴} ∈ 𝐺)
1093impb 1114 . . . . 5 ((𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺)
1110a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺))
1211rexlimivv 3199 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → ¬ {𝐴} ∈ 𝐺)
132, 12syl 17 . 2 ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ¬ {𝐴} ∈ 𝐺)
1413pm2.01da 799 1 (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {csn 4631   cuni 4912  Pligcplig 30503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-v 3480  df-ss 3980  df-sn 4632  df-uni 4913  df-plig 30504
This theorem is referenced by:  n0lplig  30512
  Copyright terms: Public domain W3C validator