Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem1 Structured version   Visualization version   GIF version

Theorem prproropf1olem1 44955
Description: Lemma 1 for prproropf1o 44959. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem1
StepHypRef Expression
1 prproropf1o.o . . . 4 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21prproropf1olem0 44954 . . 3 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
3 simpr2 1194 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))
4 prelpwi 5363 . . . . 5 (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
53, 4syl 17 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
6 sopo 5522 . . . . . . 7 (𝑅 Or 𝑉𝑅 Po 𝑉)
76adantr 481 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Po 𝑉)
8 simpr3 1195 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊)𝑅(2nd𝑊))
9 po2ne 5519 . . . . . 6 ((𝑅 Po 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) → (1st𝑊) ≠ (2nd𝑊))
107, 3, 8, 9syl3anc 1370 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ≠ (2nd𝑊))
11 fvex 6787 . . . . . 6 (1st𝑊) ∈ V
12 fvex 6787 . . . . . 6 (2nd𝑊) ∈ V
13 hashprg 14110 . . . . . 6 (((1st𝑊) ∈ V ∧ (2nd𝑊) ∈ V) → ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
1411, 12, 13mp2an 689 . . . . 5 ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
1510, 14sylib 217 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
165, 15jca 512 . . 3 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
172, 16sylan2b 594 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
18 fveqeq2 6783 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
19 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
2018, 19elrab2 3627 . 2 ({(1st𝑊), (2nd𝑊)} ∈ 𝑃 ↔ ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
2117, 20sylibr 233 1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cin 3886  𝒫 cpw 4533  {cpr 4563  cop 4567   class class class wbr 5074   Po wpo 5501   Or wor 5502   × cxp 5587  cfv 6433  1st c1st 7829  2nd c2nd 7830  2c2 12028  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  prproropf1olem3  44957  prproropf1o  44959
  Copyright terms: Public domain W3C validator