Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1olem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for prproropf1o 44441. (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
Ref | Expression |
---|---|
prproropf1olem1 | ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropf1o.o | . . . 4 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
2 | 1 | prproropf1olem0 44436 | . . 3 ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
3 | simpr2 1192 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) | |
4 | prelpwi 5312 | . . . . 5 ⊢ (((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) |
6 | sopo 5465 | . . . . . . 7 ⊢ (𝑅 Or 𝑉 → 𝑅 Po 𝑉) | |
7 | 6 | adantr 484 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → 𝑅 Po 𝑉) |
8 | simpr3 1193 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊)𝑅(2nd ‘𝑊)) | |
9 | po2ne 5462 | . . . . . 6 ⊢ ((𝑅 Po 𝑉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊)) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) | |
10 | 7, 3, 8, 9 | syl3anc 1368 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) |
11 | fvex 6676 | . . . . . 6 ⊢ (1st ‘𝑊) ∈ V | |
12 | fvex 6676 | . . . . . 6 ⊢ (2nd ‘𝑊) ∈ V | |
13 | hashprg 13819 | . . . . . 6 ⊢ (((1st ‘𝑊) ∈ V ∧ (2nd ‘𝑊) ∈ V) → ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
14 | 11, 12, 13 | mp2an 691 | . . . . 5 ⊢ ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
15 | 10, 14 | sylib 221 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
16 | 5, 15 | jca 515 | . . 3 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
17 | 2, 16 | sylan2b 596 | . 2 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
18 | fveqeq2 6672 | . . 3 ⊢ (𝑝 = {(1st ‘𝑊), (2nd ‘𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
19 | prproropf1o.p | . . 3 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
20 | 18, 19 | elrab2 3607 | . 2 ⊢ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃 ↔ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
21 | 17, 20 | sylibr 237 | 1 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 {crab 3074 Vcvv 3409 ∩ cin 3859 𝒫 cpw 4497 {cpr 4527 〈cop 4531 class class class wbr 5036 Po wpo 5445 Or wor 5446 × cxp 5526 ‘cfv 6340 1st c1st 7697 2nd c2nd 7698 2c2 11742 ♯chash 13753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-hash 13754 |
This theorem is referenced by: prproropf1olem3 44439 prproropf1o 44441 |
Copyright terms: Public domain | W3C validator |