Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem1 Structured version   Visualization version   GIF version

Theorem prproropf1olem1 47497
Description: Lemma 1 for prproropf1o 47501. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem1
StepHypRef Expression
1 prproropf1o.o . . . 4 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21prproropf1olem0 47496 . . 3 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
3 simpr2 1196 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))
4 prelpwi 5390 . . . . 5 (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
53, 4syl 17 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
6 sopo 5546 . . . . . . 7 (𝑅 Or 𝑉𝑅 Po 𝑉)
76adantr 480 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Po 𝑉)
8 simpr3 1197 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊)𝑅(2nd𝑊))
9 po2ne 5543 . . . . . 6 ((𝑅 Po 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) → (1st𝑊) ≠ (2nd𝑊))
107, 3, 8, 9syl3anc 1373 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ≠ (2nd𝑊))
11 fvex 6835 . . . . . 6 (1st𝑊) ∈ V
12 fvex 6835 . . . . . 6 (2nd𝑊) ∈ V
13 hashprg 14302 . . . . . 6 (((1st𝑊) ∈ V ∧ (2nd𝑊) ∈ V) → ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
1411, 12, 13mp2an 692 . . . . 5 ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
1510, 14sylib 218 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
165, 15jca 511 . . 3 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
172, 16sylan2b 594 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
18 fveqeq2 6831 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
19 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
2018, 19elrab2 3651 . 2 ({(1st𝑊), (2nd𝑊)} ∈ 𝑃 ↔ ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
2117, 20sylibr 234 1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cin 3902  𝒫 cpw 4551  {cpr 4579  cop 4583   class class class wbr 5092   Po wpo 5525   Or wor 5526   × cxp 5617  cfv 6482  1st c1st 7922  2nd c2nd 7923  2c2 12183  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  prproropf1olem3  47499  prproropf1o  47501
  Copyright terms: Public domain W3C validator