![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1olem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for prproropf1o 46770. (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
Ref | Expression |
---|---|
prproropf1olem1 | ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropf1o.o | . . . 4 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
2 | 1 | prproropf1olem0 46765 | . . 3 ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
3 | simpr2 1193 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) | |
4 | prelpwi 5443 | . . . . 5 ⊢ (((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) |
6 | sopo 5603 | . . . . . . 7 ⊢ (𝑅 Or 𝑉 → 𝑅 Po 𝑉) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → 𝑅 Po 𝑉) |
8 | simpr3 1194 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊)𝑅(2nd ‘𝑊)) | |
9 | po2ne 5600 | . . . . . 6 ⊢ ((𝑅 Po 𝑉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊)) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) | |
10 | 7, 3, 8, 9 | syl3anc 1369 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) |
11 | fvex 6904 | . . . . . 6 ⊢ (1st ‘𝑊) ∈ V | |
12 | fvex 6904 | . . . . . 6 ⊢ (2nd ‘𝑊) ∈ V | |
13 | hashprg 14378 | . . . . . 6 ⊢ (((1st ‘𝑊) ∈ V ∧ (2nd ‘𝑊) ∈ V) → ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
14 | 11, 12, 13 | mp2an 691 | . . . . 5 ⊢ ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
15 | 10, 14 | sylib 217 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
16 | 5, 15 | jca 511 | . . 3 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
17 | 2, 16 | sylan2b 593 | . 2 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
18 | fveqeq2 6900 | . . 3 ⊢ (𝑝 = {(1st ‘𝑊), (2nd ‘𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
19 | prproropf1o.p | . . 3 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
20 | 18, 19 | elrab2 3683 | . 2 ⊢ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃 ↔ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
21 | 17, 20 | sylibr 233 | 1 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {crab 3427 Vcvv 3469 ∩ cin 3943 𝒫 cpw 4598 {cpr 4626 ⟨cop 4630 class class class wbr 5142 Po wpo 5582 Or wor 5583 × cxp 5670 ‘cfv 6542 1st c1st 7985 2nd c2nd 7986 2c2 12289 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 |
This theorem is referenced by: prproropf1olem3 46768 prproropf1o 46770 |
Copyright terms: Public domain | W3C validator |