![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1olem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for prproropf1o 45689. (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
Ref | Expression |
---|---|
prproropf1olem1 | ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropf1o.o | . . . 4 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
2 | 1 | prproropf1olem0 45684 | . . 3 ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
3 | simpr2 1195 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) | |
4 | prelpwi 5404 | . . . . 5 ⊢ (((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) |
6 | sopo 5564 | . . . . . . 7 ⊢ (𝑅 Or 𝑉 → 𝑅 Po 𝑉) | |
7 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → 𝑅 Po 𝑉) |
8 | simpr3 1196 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊)𝑅(2nd ‘𝑊)) | |
9 | po2ne 5561 | . . . . . 6 ⊢ ((𝑅 Po 𝑉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊)) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) | |
10 | 7, 3, 8, 9 | syl3anc 1371 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) |
11 | fvex 6855 | . . . . . 6 ⊢ (1st ‘𝑊) ∈ V | |
12 | fvex 6855 | . . . . . 6 ⊢ (2nd ‘𝑊) ∈ V | |
13 | hashprg 14295 | . . . . . 6 ⊢ (((1st ‘𝑊) ∈ V ∧ (2nd ‘𝑊) ∈ V) → ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
14 | 11, 12, 13 | mp2an 690 | . . . . 5 ⊢ ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
15 | 10, 14 | sylib 217 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
16 | 5, 15 | jca 512 | . . 3 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
17 | 2, 16 | sylan2b 594 | . 2 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
18 | fveqeq2 6851 | . . 3 ⊢ (𝑝 = {(1st ‘𝑊), (2nd ‘𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
19 | prproropf1o.p | . . 3 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
20 | 18, 19 | elrab2 3648 | . 2 ⊢ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃 ↔ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
21 | 17, 20 | sylibr 233 | 1 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 {crab 3407 Vcvv 3445 ∩ cin 3909 𝒫 cpw 4560 {cpr 4588 〈cop 4592 class class class wbr 5105 Po wpo 5543 Or wor 5544 × cxp 5631 ‘cfv 6496 1st c1st 7919 2nd c2nd 7920 2c2 12208 ♯chash 14230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-oadd 8416 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-hash 14231 |
This theorem is referenced by: prproropf1olem3 45687 prproropf1o 45689 |
Copyright terms: Public domain | W3C validator |