Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem1 Structured version   Visualization version   GIF version

Theorem prproropf1olem1 46766
Description: Lemma 1 for prproropf1o 46770. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem1
StepHypRef Expression
1 prproropf1o.o . . . 4 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21prproropf1olem0 46765 . . 3 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
3 simpr2 1193 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))
4 prelpwi 5443 . . . . 5 (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
53, 4syl 17 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
6 sopo 5603 . . . . . . 7 (𝑅 Or 𝑉𝑅 Po 𝑉)
76adantr 480 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Po 𝑉)
8 simpr3 1194 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊)𝑅(2nd𝑊))
9 po2ne 5600 . . . . . 6 ((𝑅 Po 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) → (1st𝑊) ≠ (2nd𝑊))
107, 3, 8, 9syl3anc 1369 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ≠ (2nd𝑊))
11 fvex 6904 . . . . . 6 (1st𝑊) ∈ V
12 fvex 6904 . . . . . 6 (2nd𝑊) ∈ V
13 hashprg 14378 . . . . . 6 (((1st𝑊) ∈ V ∧ (2nd𝑊) ∈ V) → ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
1411, 12, 13mp2an 691 . . . . 5 ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
1510, 14sylib 217 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
165, 15jca 511 . . 3 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
172, 16sylan2b 593 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
18 fveqeq2 6900 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
19 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
2018, 19elrab2 3683 . 2 ({(1st𝑊), (2nd𝑊)} ∈ 𝑃 ↔ ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
2117, 20sylibr 233 1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  {crab 3427  Vcvv 3469  cin 3943  𝒫 cpw 4598  {cpr 4626  cop 4630   class class class wbr 5142   Po wpo 5582   Or wor 5583   × cxp 5670  cfv 6542  1st c1st 7985  2nd c2nd 7986  2c2 12289  chash 14313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-hash 14314
This theorem is referenced by:  prproropf1olem3  46768  prproropf1o  46770
  Copyright terms: Public domain W3C validator