Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropf1olem1 Structured version   Visualization version   GIF version

Theorem prproropf1olem1 47508
Description: Lemma 1 for prproropf1o 47512. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
prproropf1o.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropf1o.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
Assertion
Ref Expression
prproropf1olem1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝
Allowed substitution hints:   𝑃(𝑝)   𝑅(𝑝)   𝑂(𝑝)

Proof of Theorem prproropf1olem1
StepHypRef Expression
1 prproropf1o.o . . . 4 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
21prproropf1olem0 47507 . . 3 (𝑊𝑂 ↔ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)))
3 simpr2 1196 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉))
4 prelpwi 5410 . . . . 5 (((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
53, 4syl 17 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → {(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉)
6 sopo 5568 . . . . . . 7 (𝑅 Or 𝑉𝑅 Po 𝑉)
76adantr 480 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → 𝑅 Po 𝑉)
8 simpr3 1197 . . . . . 6 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊)𝑅(2nd𝑊))
9 po2ne 5565 . . . . . 6 ((𝑅 Po 𝑉 ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊)) → (1st𝑊) ≠ (2nd𝑊))
107, 3, 8, 9syl3anc 1373 . . . . 5 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (1st𝑊) ≠ (2nd𝑊))
11 fvex 6874 . . . . . 6 (1st𝑊) ∈ V
12 fvex 6874 . . . . . 6 (2nd𝑊) ∈ V
13 hashprg 14367 . . . . . 6 (((1st𝑊) ∈ V ∧ (2nd𝑊) ∈ V) → ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
1411, 12, 13mp2an 692 . . . . 5 ((1st𝑊) ≠ (2nd𝑊) ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
1510, 14sylib 218 . . . 4 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → (♯‘{(1st𝑊), (2nd𝑊)}) = 2)
165, 15jca 511 . . 3 ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ ∧ ((1st𝑊) ∈ 𝑉 ∧ (2nd𝑊) ∈ 𝑉) ∧ (1st𝑊)𝑅(2nd𝑊))) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
172, 16sylan2b 594 . 2 ((𝑅 Or 𝑉𝑊𝑂) → ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
18 fveqeq2 6870 . . 3 (𝑝 = {(1st𝑊), (2nd𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
19 prproropf1o.p . . 3 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
2018, 19elrab2 3665 . 2 ({(1st𝑊), (2nd𝑊)} ∈ 𝑃 ↔ ({(1st𝑊), (2nd𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st𝑊), (2nd𝑊)}) = 2))
2117, 20sylibr 234 1 ((𝑅 Or 𝑉𝑊𝑂) → {(1st𝑊), (2nd𝑊)} ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cin 3916  𝒫 cpw 4566  {cpr 4594  cop 4598   class class class wbr 5110   Po wpo 5547   Or wor 5548   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970  2c2 12248  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  prproropf1olem3  47510  prproropf1o  47512
  Copyright terms: Public domain W3C validator