![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropf1olem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for prproropf1o 46910. (Contributed by AV, 12-Mar-2023.) |
Ref | Expression |
---|---|
prproropf1o.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropf1o.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
Ref | Expression |
---|---|
prproropf1olem1 | ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropf1o.o | . . . 4 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
2 | 1 | prproropf1olem0 46905 | . . 3 ⊢ (𝑊 ∈ 𝑂 ↔ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) |
3 | simpr2 1192 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉)) | |
4 | prelpwi 5448 | . . . . 5 ⊢ (((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉) |
6 | sopo 5608 | . . . . . . 7 ⊢ (𝑅 Or 𝑉 → 𝑅 Po 𝑉) | |
7 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → 𝑅 Po 𝑉) |
8 | simpr3 1193 | . . . . . 6 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊)𝑅(2nd ‘𝑊)) | |
9 | po2ne 5605 | . . . . . 6 ⊢ ((𝑅 Po 𝑉 ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊)) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) | |
10 | 7, 3, 8, 9 | syl3anc 1368 | . . . . 5 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (1st ‘𝑊) ≠ (2nd ‘𝑊)) |
11 | fvex 6907 | . . . . . 6 ⊢ (1st ‘𝑊) ∈ V | |
12 | fvex 6907 | . . . . . 6 ⊢ (2nd ‘𝑊) ∈ V | |
13 | hashprg 14386 | . . . . . 6 ⊢ (((1st ‘𝑊) ∈ V ∧ (2nd ‘𝑊) ∈ V) → ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
14 | 11, 12, 13 | mp2an 690 | . . . . 5 ⊢ ((1st ‘𝑊) ≠ (2nd ‘𝑊) ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
15 | 10, 14 | sylib 217 | . . . 4 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2) |
16 | 5, 15 | jca 510 | . . 3 ⊢ ((𝑅 Or 𝑉 ∧ (𝑊 = ⟨(1st ‘𝑊), (2nd ‘𝑊)⟩ ∧ ((1st ‘𝑊) ∈ 𝑉 ∧ (2nd ‘𝑊) ∈ 𝑉) ∧ (1st ‘𝑊)𝑅(2nd ‘𝑊))) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
17 | 2, 16 | sylan2b 592 | . 2 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
18 | fveqeq2 6903 | . . 3 ⊢ (𝑝 = {(1st ‘𝑊), (2nd ‘𝑊)} → ((♯‘𝑝) = 2 ↔ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) | |
19 | prproropf1o.p | . . 3 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
20 | 18, 19 | elrab2 3683 | . 2 ⊢ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃 ↔ ({(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝒫 𝑉 ∧ (♯‘{(1st ‘𝑊), (2nd ‘𝑊)}) = 2)) |
21 | 17, 20 | sylibr 233 | 1 ⊢ ((𝑅 Or 𝑉 ∧ 𝑊 ∈ 𝑂) → {(1st ‘𝑊), (2nd ‘𝑊)} ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 {crab 3419 Vcvv 3463 ∩ cin 3944 𝒫 cpw 4603 {cpr 4631 ⟨cop 4635 class class class wbr 5148 Po wpo 5587 Or wor 5588 × cxp 5675 ‘cfv 6547 1st c1st 7990 2nd c2nd 7991 2c2 12297 ♯chash 14321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-hash 14322 |
This theorem is referenced by: prproropf1olem3 46908 prproropf1o 46910 |
Copyright terms: Public domain | W3C validator |