Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preex Structured version   Visualization version   GIF version

Theorem preex 38514
Description: The successor-predecessor exists. (Contributed by Peter Mazsa, 12-Jan-2026.)
Assertion
Ref Expression
preex pre 𝑁 ∈ V

Proof of Theorem preex
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-pre 38498 . 2 pre 𝑁 = (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁))
2 iotaex 6457 . 2 (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁)) ∈ V
31, 2eqeltri 2827 1 pre 𝑁 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  dom cdm 5614  Predcpred 6247  cio 6435   SucMap csucmap 38227   pre cpre 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857  df-iota 6437  df-pre 38498
This theorem is referenced by:  presucmap  38517  preuniqval  38518  sucpre  38519  preel  38522
  Copyright terms: Public domain W3C validator