Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucpre Structured version   Visualization version   GIF version

Theorem sucpre 38519
Description: suc is a right-inverse of pre on Suc. This theorem states the partial inverse relation in the direction we most often need. (Contributed by Peter Mazsa, 27-Jan-2026.)
Assertion
Ref Expression
sucpre (𝑁 ∈ Suc → suc pre 𝑁 = 𝑁)

Proof of Theorem sucpre
StepHypRef Expression
1 presucmap 38517 . . 3 (𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁)
2 preex 38514 . . . 4 pre 𝑁 ∈ V
3 brsucmap 38489 . . . 4 (( pre 𝑁 ∈ V ∧ 𝑁 ∈ ran SucMap ) → ( pre 𝑁 SucMap 𝑁 ↔ suc pre 𝑁 = 𝑁))
42, 3mpan 690 . . 3 (𝑁 ∈ ran SucMap → ( pre 𝑁 SucMap 𝑁 ↔ suc pre 𝑁 = 𝑁))
51, 4mpbid 232 . 2 (𝑁 ∈ ran SucMap → suc pre 𝑁 = 𝑁)
6 df-succl 38492 . 2 Suc = ran SucMap
75, 6eleq2s 2849 1 (𝑁 ∈ Suc → suc pre 𝑁 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5089  ran crn 5615  suc csuc 6308   SucMap csucmap 38227   Suc csuccl 38228   pre cpre 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-suc 6312  df-iota 6437  df-sucmap 38485  df-succl 38492  df-pre 38498
This theorem is referenced by:  presuc  38520  press  38521  preel  38522
  Copyright terms: Public domain W3C validator