Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preuniqval Structured version   Visualization version   GIF version

Theorem preuniqval 38518
Description: Uniqueness/canonicity of pre. presucmap 38517 gives one witness; this theorem gives it is the only one. It turns any predecessor proof into an equality with pre 𝑁. (Contributed by Peter Mazsa, 12-Jan-2026.)
Assertion
Ref Expression
preuniqval (𝑁 ∈ ran SucMap → ∀𝑚(𝑚 SucMap 𝑁𝑚 = pre 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem preuniqval
StepHypRef Expression
1 presucmap 38517 . . . 4 (𝑁 ∈ ran SucMap → pre 𝑁 SucMap 𝑁)
2 preex 38514 . . . . . 6 pre 𝑁 ∈ V
3 sucmapleftuniq 38512 . . . . . 6 (( pre 𝑁 ∈ V ∧ 𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → (( pre 𝑁 SucMap 𝑁𝑚 SucMap 𝑁) → pre 𝑁 = 𝑚))
42, 3mp3an1 1450 . . . . 5 ((𝑚 ∈ V ∧ 𝑁 ∈ ran SucMap ) → (( pre 𝑁 SucMap 𝑁𝑚 SucMap 𝑁) → pre 𝑁 = 𝑚))
54el2v1 38274 . . . 4 (𝑁 ∈ ran SucMap → (( pre 𝑁 SucMap 𝑁𝑚 SucMap 𝑁) → pre 𝑁 = 𝑚))
61, 5mpand 695 . . 3 (𝑁 ∈ ran SucMap → (𝑚 SucMap 𝑁 → pre 𝑁 = 𝑚))
7 eqcom 2738 . . 3 ( pre 𝑁 = 𝑚𝑚 = pre 𝑁)
86, 7imbitrdi 251 . 2 (𝑁 ∈ ran SucMap → (𝑚 SucMap 𝑁𝑚 = pre 𝑁))
98alrimiv 1928 1 (𝑁 ∈ ran SucMap → ∀𝑚(𝑚 SucMap 𝑁𝑚 = pre 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436   class class class wbr 5089  ran crn 5615   SucMap csucmap 38227   pre cpre 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-suc 6312  df-iota 6437  df-sucmap 38485  df-pre 38498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator