Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exeupre Structured version   Visualization version   GIF version

Theorem exeupre 38513
Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026.)
Assertion
Ref Expression
exeupre (𝑁𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 𝑚 SucMap 𝑁))
Distinct variable groups:   𝑚,𝑁   𝑚,𝑉

Proof of Theorem exeupre
StepHypRef Expression
1 brsucmap 38489 . . . . 5 ((𝑚 ∈ V ∧ 𝑁𝑉) → (𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁))
21el2v1 38274 . . . 4 (𝑁𝑉 → (𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁))
32exbidv 1922 . . 3 (𝑁𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃𝑚 suc 𝑚 = 𝑁))
4 exeupre2 38495 . . 3 (∃𝑚 suc 𝑚 = 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁)
53, 4bitrdi 287 . 2 (𝑁𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁))
62eubidv 2581 . 2 (𝑁𝑉 → (∃!𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁))
75, 6bitr4d 282 1 (𝑁𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 𝑚 SucMap 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  Vcvv 3436   class class class wbr 5089  suc csuc 6308   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-suc 6312  df-sucmap 38485
This theorem is referenced by:  eupre2  38515
  Copyright terms: Public domain W3C validator