| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exeupre | Structured version Visualization version GIF version | ||
| Description: Whenever a predecessor exists, it exists alone. (Contributed by Peter Mazsa, 12-Jan-2026.) |
| Ref | Expression |
|---|---|
| exeupre | ⊢ (𝑁 ∈ 𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 𝑚 SucMap 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsucmap 38489 | . . . . 5 ⊢ ((𝑚 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁)) | |
| 2 | 1 | el2v1 38274 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑚 SucMap 𝑁 ↔ suc 𝑚 = 𝑁)) |
| 3 | 2 | exbidv 1922 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃𝑚 suc 𝑚 = 𝑁)) |
| 4 | exeupre2 38495 | . . 3 ⊢ (∃𝑚 suc 𝑚 = 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁) | |
| 5 | 3, 4 | bitrdi 287 | . 2 ⊢ (𝑁 ∈ 𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁)) |
| 6 | 2 | eubidv 2581 | . 2 ⊢ (𝑁 ∈ 𝑉 → (∃!𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 suc 𝑚 = 𝑁)) |
| 7 | 5, 6 | bitr4d 282 | 1 ⊢ (𝑁 ∈ 𝑉 → (∃𝑚 𝑚 SucMap 𝑁 ↔ ∃!𝑚 𝑚 SucMap 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 class class class wbr 5089 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-suc 6312 df-sucmap 38485 |
| This theorem is referenced by: eupre2 38515 |
| Copyright terms: Public domain | W3C validator |