MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg2 Structured version   Visualization version   GIF version

Theorem prneimg2 4835
Description: Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025.)
Assertion
Ref Expression
prneimg2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶))))

Proof of Theorem prneimg2
StepHypRef Expression
1 preq12bg 4833 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
21necon3abid 2967 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ¬ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
3 ioran 985 . . 3 (¬ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (¬ (𝐴 = 𝐶𝐵 = 𝐷) ∧ ¬ (𝐴 = 𝐷𝐵 = 𝐶)))
4 ianor 983 . . . . 5 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
5 df-ne 2932 . . . . . 6 (𝐴𝐶 ↔ ¬ 𝐴 = 𝐶)
6 df-ne 2932 . . . . . 6 (𝐵𝐷 ↔ ¬ 𝐵 = 𝐷)
75, 6orbi12i 914 . . . . 5 ((𝐴𝐶𝐵𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
84, 7bitr4i 278 . . . 4 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐴𝐶𝐵𝐷))
9 ianor 983 . . . . 5 (¬ (𝐴 = 𝐷𝐵 = 𝐶) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶))
10 df-ne 2932 . . . . . 6 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
11 df-ne 2932 . . . . . 6 (𝐵𝐶 ↔ ¬ 𝐵 = 𝐶)
1210, 11orbi12i 914 . . . . 5 ((𝐴𝐷𝐵𝐶) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶))
139, 12bitr4i 278 . . . 4 (¬ (𝐴 = 𝐷𝐵 = 𝐶) ↔ (𝐴𝐷𝐵𝐶))
148, 13anbi12i 628 . . 3 ((¬ (𝐴 = 𝐶𝐵 = 𝐷) ∧ ¬ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶)))
153, 14bitri 275 . 2 (¬ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶)))
162, 15bitrdi 287 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by:  gpg5nbgrvtx03starlem1  47997  gpg5nbgrvtx03starlem2  47998  gpg5nbgrvtx03starlem3  47999  gpg5nbgrvtx13starlem1  48000  gpg5nbgrvtx13starlem2  48001  gpg5nbgrvtx13starlem3  48002
  Copyright terms: Public domain W3C validator