MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg2 Structured version   Visualization version   GIF version

Theorem prneimg2 4880
Description: Two pairs are not equal if their counterparts are not equal. (Contributed by AV, 5-Sep-2025.)
Assertion
Ref Expression
prneimg2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶))))

Proof of Theorem prneimg2
StepHypRef Expression
1 preq12bg 4878 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
21necon3abid 2983 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ¬ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
3 ioran 984 . . 3 (¬ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (¬ (𝐴 = 𝐶𝐵 = 𝐷) ∧ ¬ (𝐴 = 𝐷𝐵 = 𝐶)))
4 ianor 982 . . . . 5 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
5 df-ne 2947 . . . . . 6 (𝐴𝐶 ↔ ¬ 𝐴 = 𝐶)
6 df-ne 2947 . . . . . 6 (𝐵𝐷 ↔ ¬ 𝐵 = 𝐷)
75, 6orbi12i 913 . . . . 5 ((𝐴𝐶𝐵𝐷) ↔ (¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷))
84, 7bitr4i 278 . . . 4 (¬ (𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐴𝐶𝐵𝐷))
9 ianor 982 . . . . 5 (¬ (𝐴 = 𝐷𝐵 = 𝐶) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶))
10 df-ne 2947 . . . . . 6 (𝐴𝐷 ↔ ¬ 𝐴 = 𝐷)
11 df-ne 2947 . . . . . 6 (𝐵𝐶 ↔ ¬ 𝐵 = 𝐶)
1210, 11orbi12i 913 . . . . 5 ((𝐴𝐷𝐵𝐶) ↔ (¬ 𝐴 = 𝐷 ∨ ¬ 𝐵 = 𝐶))
139, 12bitr4i 278 . . . 4 (¬ (𝐴 = 𝐷𝐵 = 𝐶) ↔ (𝐴𝐷𝐵𝐶))
148, 13anbi12i 627 . . 3 ((¬ (𝐴 = 𝐶𝐵 = 𝐷) ∧ ¬ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶)))
153, 14bitri 275 . 2 (¬ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶)))
162, 15bitrdi 287 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} ↔ ((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐷𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  gpg5nbgrvtx03starlem1  47911  gpg5nbgrvtx03starlem2  47912  gpg5nbgrvtx03starlem3  47913  gpg5nbgrvtx13starlem1  47914  gpg5nbgrvtx13starlem2  47915  gpg5nbgrvtx13starlem3  47916
  Copyright terms: Public domain W3C validator