Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5nbgrvtx13starlem3 Structured version   Visualization version   GIF version

Theorem gpg5nbgrvtx13starlem3 48054
Description: Lemma 3 for gpg5nbgr3star 48062. (Contributed by AV, 8-Sep-2025.)
Hypotheses
Ref Expression
gpg5nbgrvtx03starlem1.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpg5nbgrvtx03starlem1.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg5nbgrvtx03starlem1.v 𝑉 = (Vtx‘𝐺)
gpg5nbgrvtx03starlem1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpg5nbgrvtx13starlem3 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∉ 𝐸)

Proof of Theorem gpg5nbgrvtx13starlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opex 5426 . . . . . . . . 9 ⟨0, 𝑋⟩ ∈ V
2 opex 5426 . . . . . . . . 9 ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V
31, 2pm3.2i 470 . . . . . . . 8 (⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V)
4 opex 5426 . . . . . . . . 9 ⟨0, 𝑥⟩ ∈ V
5 opex 5426 . . . . . . . . 9 ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V
64, 5pm3.2i 470 . . . . . . . 8 (⟨0, 𝑥⟩ ∈ V ∧ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V)
73, 6pm3.2i 470 . . . . . . 7 ((⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V))
8 ax-1ne0 11143 . . . . . . . . . . . 12 1 ≠ 0
98orci 865 . . . . . . . . . . 11 (1 ≠ 0 ∨ ((𝑋𝐾) mod 𝑁) ≠ 𝑥)
10 1ex 11176 . . . . . . . . . . . 12 1 ∈ V
11 ovex 7422 . . . . . . . . . . . 12 ((𝑋𝐾) mod 𝑁) ∈ V
1210, 11opthne 5444 . . . . . . . . . . 11 (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ↔ (1 ≠ 0 ∨ ((𝑋𝐾) mod 𝑁) ≠ 𝑥))
139, 12mpbir 231 . . . . . . . . . 10 ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥
148orci 865 . . . . . . . . . . 11 (1 ≠ 0 ∨ ((𝑋𝐾) mod 𝑁) ≠ ((𝑥 + 1) mod 𝑁))
1510, 11opthne 5444 . . . . . . . . . . 11 (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ ((𝑋𝐾) mod 𝑁) ≠ ((𝑥 + 1) mod 𝑁)))
1614, 15mpbir 231 . . . . . . . . . 10 ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩
1713, 16pm3.2i 470 . . . . . . . . 9 (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩)
1817a1i 11 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩))
1918olcd 874 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩) ∨ (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩)))
20 prneimg 4820 . . . . . . 7 (((⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V)) → (((⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩) ∨ (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩)) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
217, 19, 20mpsyl 68 . . . . . 6 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
22 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝑥 → (𝑋 ∈ (0..^𝑁) ↔ 𝑥 ∈ (0..^𝑁)))
2322adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝑥 ∧ ((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊)) → (𝑋 ∈ (0..^𝑁) ↔ 𝑥 ∈ (0..^𝑁)))
24 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → 𝑁 = 5)
2524oveq2d 7405 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (0..^𝑁) = (0..^5))
2625eleq2d 2815 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (𝑋 ∈ (0..^𝑁) ↔ 𝑋 ∈ (0..^5)))
2726biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → 𝑋 ∈ (0..^5))
28 5nn 12273 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℕ
29 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = 5 → (𝑁 ∈ ℕ ↔ 5 ∈ ℕ))
3028, 29mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 = 5 → 𝑁 ∈ ℕ)
31 gpg5nbgrvtx03starlem1.j . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3231ceilhalfelfzo1 47321 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝐾𝐽𝐾 ∈ (1..^𝑁)))
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 5 → (𝐾𝐽𝐾 ∈ (1..^𝑁)))
34 oveq2 7397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 = 5 → (1..^𝑁) = (1..^5))
3534eleq2d 2815 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 5 → (𝐾 ∈ (1..^𝑁) ↔ 𝐾 ∈ (1..^5)))
3633, 35sylibd 239 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 5 → (𝐾𝐽𝐾 ∈ (1..^5)))
3736imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 = 5 ∧ 𝐾𝐽) → 𝐾 ∈ (1..^5))
3837ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → 𝐾 ∈ (1..^5))
39 minusmod5ne 47340 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝑋𝐾) mod 5) ≠ 𝑋)
4027, 38, 39syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → ((𝑋𝐾) mod 5) ≠ 𝑋)
41 oveq2 7397 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 5 → ((𝑋𝐾) mod 𝑁) = ((𝑋𝐾) mod 5))
4241neeq1d 2985 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 = 5 → (((𝑋𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋𝐾) mod 5) ≠ 𝑋))
4342adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 5 ∧ 𝐾𝐽) → (((𝑋𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋𝐾) mod 5) ≠ 𝑋))
4443ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → (((𝑋𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋𝐾) mod 5) ≠ 𝑋))
4540, 44mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → ((𝑋𝐾) mod 𝑁) ≠ 𝑋)
4645ex 412 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (𝑋 ∈ (0..^𝑁) → ((𝑋𝐾) mod 𝑁) ≠ 𝑋))
4746adantl 481 . . . . . . . . . . . . . . . 16 ((𝑋 = 𝑥 ∧ ((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊)) → (𝑋 ∈ (0..^𝑁) → ((𝑋𝐾) mod 𝑁) ≠ 𝑋))
4823, 47sylbird 260 . . . . . . . . . . . . . . 15 ((𝑋 = 𝑥 ∧ ((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊)) → (𝑥 ∈ (0..^𝑁) → ((𝑋𝐾) mod 𝑁) ≠ 𝑋))
4948impr 454 . . . . . . . . . . . . . 14 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → ((𝑋𝐾) mod 𝑁) ≠ 𝑋)
50 neeq2 2989 . . . . . . . . . . . . . . 15 (𝑋 = 𝑥 → (((𝑋𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋𝐾) mod 𝑁) ≠ 𝑥))
5150adantr 480 . . . . . . . . . . . . . 14 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → (((𝑋𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋𝐾) mod 𝑁) ≠ 𝑥))
5249, 51mpbid 232 . . . . . . . . . . . . 13 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → ((𝑋𝐾) mod 𝑁) ≠ 𝑥)
5352orcd 873 . . . . . . . . . . . 12 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → (((𝑋𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥))
5453ex 412 . . . . . . . . . . 11 (𝑋 = 𝑥 → ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (((𝑋𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥)))
55 olc 868 . . . . . . . . . . . 12 (𝑋𝑥 → (((𝑋𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥))
5655a1d 25 . . . . . . . . . . 11 (𝑋𝑥 → ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (((𝑋𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥)))
5754, 56pm2.61ine 3009 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (((𝑋𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥))
5810, 11opthne 5444 . . . . . . . . . . . . 13 (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ↔ (1 ≠ 1 ∨ ((𝑋𝐾) mod 𝑁) ≠ 𝑥))
59 neirr 2935 . . . . . . . . . . . . . 14 ¬ 1 ≠ 1
6059biorfi 938 . . . . . . . . . . . . 13 (((𝑋𝐾) mod 𝑁) ≠ 𝑥 ↔ (1 ≠ 1 ∨ ((𝑋𝐾) mod 𝑁) ≠ 𝑥))
6158, 60bitr4i 278 . . . . . . . . . . . 12 (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ↔ ((𝑋𝐾) mod 𝑁) ≠ 𝑥)
6261a1i 11 . . . . . . . . . . 11 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ↔ ((𝑋𝐾) mod 𝑁) ≠ 𝑥))
63 c0ex 11174 . . . . . . . . . . . . . . . 16 0 ∈ V
6463a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 = 5 ∧ 𝐾𝐽) → 0 ∈ V)
6564anim1i 615 . . . . . . . . . . . . . 14 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (0 ∈ V ∧ 𝑋𝑊))
6665adantr 480 . . . . . . . . . . . . 13 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (0 ∈ V ∧ 𝑋𝑊))
67 opthneg 5443 . . . . . . . . . . . . 13 ((0 ∈ V ∧ 𝑋𝑊) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ↔ (0 ≠ 0 ∨ 𝑋𝑥)))
6866, 67syl 17 . . . . . . . . . . . 12 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ↔ (0 ≠ 0 ∨ 𝑋𝑥)))
69 neirr 2935 . . . . . . . . . . . . 13 ¬ 0 ≠ 0
7069biorfi 938 . . . . . . . . . . . 12 (𝑋𝑥 ↔ (0 ≠ 0 ∨ 𝑋𝑥))
7168, 70bitr4di 289 . . . . . . . . . . 11 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ↔ 𝑋𝑥))
7262, 71orbi12d 918 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩) ↔ (((𝑋𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥)))
7357, 72mpbird 257 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩))
7473orcomd 871 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩))
75 0ne1 12258 . . . . . . . . . . 11 0 ≠ 1
7675orci 865 . . . . . . . . . 10 (0 ≠ 1 ∨ 𝑋𝑥)
77 opthneg 5443 . . . . . . . . . . 11 ((0 ∈ V ∧ 𝑋𝑊) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ↔ (0 ≠ 1 ∨ 𝑋𝑥)))
7866, 77syl 17 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ↔ (0 ≠ 1 ∨ 𝑋𝑥)))
7976, 78mpbiri 258 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩)
8079orcd 873 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩))
8174, 80jca 511 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩) ∧ (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩)))
82 opex 5426 . . . . . . . . . 10 ⟨1, 𝑥⟩ ∈ V
834, 82pm3.2i 470 . . . . . . . . 9 (⟨0, 𝑥⟩ ∈ V ∧ ⟨1, 𝑥⟩ ∈ V)
843, 83pm3.2i 470 . . . . . . . 8 ((⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨1, 𝑥⟩ ∈ V))
85 prneimg2 4821 . . . . . . . 8 (((⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨1, 𝑥⟩ ∈ V)) → ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ ((⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩) ∧ (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩))))
8684, 85mp1i 13 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ ((⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩) ∧ (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩))))
8781, 86mpbird 257 . . . . . 6 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩})
88 opex 5426 . . . . . . . . 9 ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V
8982, 88pm3.2i 470 . . . . . . . 8 (⟨1, 𝑥⟩ ∈ V ∧ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V)
903, 89pm3.2i 470 . . . . . . 7 ((⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V) ∧ (⟨1, 𝑥⟩ ∈ V ∧ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V))
9175orci 865 . . . . . . . . . 10 (0 ≠ 1 ∨ 𝑋 ≠ ((𝑥 + 𝐾) mod 𝑁))
92 opthneg 5443 . . . . . . . . . . 11 ((0 ∈ V ∧ 𝑋𝑊) → (⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ↔ (0 ≠ 1 ∨ 𝑋 ≠ ((𝑥 + 𝐾) mod 𝑁))))
9366, 92syl 17 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ↔ (0 ≠ 1 ∨ 𝑋 ≠ ((𝑥 + 𝐾) mod 𝑁))))
9491, 93mpbiri 258 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)
9579, 94jca 511 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩))
9695orcd 873 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩) ∨ (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)))
97 prneimg 4820 . . . . . . 7 (((⟨0, 𝑋⟩ ∈ V ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ∈ V) ∧ (⟨1, 𝑥⟩ ∈ V ∧ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V)) → (((⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩) ∨ (⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨1, ((𝑋𝐾) mod 𝑁)⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
9890, 96, 97mpsyl 68 . . . . . 6 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
9921, 87, 983jca 1128 . . . . 5 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
10099ralrimiva 3126 . . . 4 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ∀𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
101 ralnex 3056 . . . . 5 (∀𝑥 ∈ (0..^𝑁) ¬ ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ¬ ∃𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
102 3ioran 1105 . . . . . . 7 (¬ ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
103 df-ne 2927 . . . . . . . 8 ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
104 df-ne 2927 . . . . . . . 8 ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩})
105 df-ne 2927 . . . . . . . 8 ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
106103, 104, 1053anbi123i 1155 . . . . . . 7 (({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
107102, 106bitr4i 278 . . . . . 6 (¬ ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
108107ralbii 3076 . . . . 5 (∀𝑥 ∈ (0..^𝑁) ¬ ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∀𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
109101, 108bitr3i 277 . . . 4 (¬ ∃𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∀𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
110100, 109sylibr 234 . . 3 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ¬ ∃𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
111 5eluz3 12848 . . . . . 6 5 ∈ (ℤ‘3)
112 eleq1 2817 . . . . . 6 (𝑁 = 5 → (𝑁 ∈ (ℤ‘3) ↔ 5 ∈ (ℤ‘3)))
113111, 112mpbiri 258 . . . . 5 (𝑁 = 5 → 𝑁 ∈ (ℤ‘3))
114 eqid 2730 . . . . . 6 (0..^𝑁) = (0..^𝑁)
115 gpg5nbgrvtx03starlem1.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
116 gpg5nbgrvtx03starlem1.e . . . . . 6 𝐸 = (Edg‘𝐺)
117114, 31, 115, 116gpgedgel 48031 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∈ 𝐸 ↔ ∃𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
118113, 117sylan 580 . . . 4 ((𝑁 = 5 ∧ 𝐾𝐽) → ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∈ 𝐸 ↔ ∃𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
119118adantr 480 . . 3 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∈ 𝐸 ↔ ∃𝑥 ∈ (0..^𝑁)({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
120110, 119mtbird 325 . 2 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∈ 𝐸)
121 df-nel 3031 . 2 ({⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∈ 𝐸)
122120, 121sylibr 234 1 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → {⟨0, 𝑋⟩, ⟨1, ((𝑋𝐾) mod 𝑁)⟩} ∉ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wnel 3030  wral 3045  wrex 3054  Vcvv 3450  {cpr 4593  cop 4597  cfv 6513  (class class class)co 7389  0cc0 11074  1c1 11075   + caddc 11077  cmin 11411   / cdiv 11841  cn 12187  2c2 12242  3c3 12243  5c5 12245  cuz 12799  ..^cfzo 13621  cceil 13759   mod cmo 13837  Vtxcvtx 28929  Edgcedg 28980   gPetersenGr cgpg 48021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-ceil 13761  df-mod 13838  df-hash 14302  df-dvds 16229  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-iedg 28932  df-edg 28981  df-gpg 48022
This theorem is referenced by:  gpg5nbgr3star  48062
  Copyright terms: Public domain W3C validator