Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5nbgrvtx13starlem1 Structured version   Visualization version   GIF version

Theorem gpg5nbgrvtx13starlem1 48075
Description: Lemma 1 for gpg5nbgr3star 48085. (Contributed by AV, 7-Sep-2025.)
Hypotheses
Ref Expression
gpg5nbgrvtx03starlem1.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpg5nbgrvtx03starlem1.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg5nbgrvtx03starlem1.v 𝑉 = (Vtx‘𝐺)
gpg5nbgrvtx03starlem1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpg5nbgrvtx13starlem1 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∉ 𝐸)

Proof of Theorem gpg5nbgrvtx13starlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opex 5411 . . . . . . . . 9 ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V
2 opex 5411 . . . . . . . . 9 ⟨0, 𝑋⟩ ∈ V
31, 2pm3.2i 470 . . . . . . . 8 (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V)
4 opex 5411 . . . . . . . . 9 ⟨0, 𝑥⟩ ∈ V
5 opex 5411 . . . . . . . . 9 ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V
64, 5pm3.2i 470 . . . . . . . 8 (⟨0, 𝑥⟩ ∈ V ∧ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V)
73, 6pm3.2i 470 . . . . . . 7 ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V))
8 ax-1ne0 11097 . . . . . . . . . . . 12 1 ≠ 0
98orci 865 . . . . . . . . . . 11 (1 ≠ 0 ∨ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥)
10 1ex 11130 . . . . . . . . . . . 12 1 ∈ V
11 ovex 7386 . . . . . . . . . . . 12 ((𝑋 + 𝐾) mod 𝑁) ∈ V
1210, 11opthne 5429 . . . . . . . . . . 11 (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ↔ (1 ≠ 0 ∨ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥))
139, 12mpbir 231 . . . . . . . . . 10 ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥
148orci 865 . . . . . . . . . . 11 (1 ≠ 0 ∨ ((𝑋 + 𝐾) mod 𝑁) ≠ ((𝑥 + 1) mod 𝑁))
1510, 11opthne 5429 . . . . . . . . . . 11 (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ↔ (1 ≠ 0 ∨ ((𝑋 + 𝐾) mod 𝑁) ≠ ((𝑥 + 1) mod 𝑁)))
1614, 15mpbir 231 . . . . . . . . . 10 ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩
1713, 16pm3.2i 470 . . . . . . . . 9 (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩)
1817a1i 11 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩))
1918orcd 873 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩) ∨ (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩)))
20 prneimg 4808 . . . . . . 7 (((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨0, ((𝑥 + 1) mod 𝑁)⟩ ∈ V)) → (((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩) ∨ (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨0, ((𝑥 + 1) mod 𝑁)⟩)) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩}))
217, 19, 20mpsyl 68 . . . . . 6 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
22 0ne1 12218 . . . . . . . . . . 11 0 ≠ 1
2322orci 865 . . . . . . . . . 10 (0 ≠ 1 ∨ 𝑋𝑥)
24 c0ex 11128 . . . . . . . . . . . . . 14 0 ∈ V
2524a1i 11 . . . . . . . . . . . . 13 ((𝑁 = 5 ∧ 𝐾𝐽) → 0 ∈ V)
2625anim1i 615 . . . . . . . . . . . 12 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (0 ∈ V ∧ 𝑋𝑊))
2726adantr 480 . . . . . . . . . . 11 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (0 ∈ V ∧ 𝑋𝑊))
28 opthneg 5428 . . . . . . . . . . 11 ((0 ∈ V ∧ 𝑋𝑊) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ↔ (0 ≠ 1 ∨ 𝑋𝑥)))
2927, 28syl 17 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ↔ (0 ≠ 1 ∨ 𝑋𝑥)))
3023, 29mpbiri 258 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩)
3130olcd 874 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩))
32 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑋 = 𝑥 → (𝑋 ∈ (0..^𝑁) ↔ 𝑥 ∈ (0..^𝑁)))
3332adantr 480 . . . . . . . . . . . . . . 15 ((𝑋 = 𝑥 ∧ ((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊)) → (𝑋 ∈ (0..^𝑁) ↔ 𝑥 ∈ (0..^𝑁)))
34 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 5 → (0..^𝑁) = (0..^5))
3534eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 5 → (𝑋 ∈ (0..^𝑁) ↔ 𝑋 ∈ (0..^5)))
3635biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 = 5 → (𝑋 ∈ (0..^𝑁) → 𝑋 ∈ (0..^5)))
3736ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (𝑋 ∈ (0..^𝑁) → 𝑋 ∈ (0..^5)))
3837imp 406 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → 𝑋 ∈ (0..^5))
39 5nn 12233 . . . . . . . . . . . . . . . . . . . . . . . 24 5 ∈ ℕ
40 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 = 5 → (𝑁 ∈ ℕ ↔ 5 ∈ ℕ))
4139, 40mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 5 → 𝑁 ∈ ℕ)
42 gpg5nbgrvtx03starlem1.j . . . . . . . . . . . . . . . . . . . . . . . 24 𝐽 = (1..^(⌈‘(𝑁 / 2)))
4342ceilhalfelfzo1 47334 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (𝐾𝐽𝐾 ∈ (1..^𝑁)))
4441, 43syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 5 → (𝐾𝐽𝐾 ∈ (1..^𝑁)))
45 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 5 → (1..^𝑁) = (1..^5))
4645eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 5 → (𝐾 ∈ (1..^𝑁) ↔ 𝐾 ∈ (1..^5)))
4744, 46sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 = 5 → (𝐾𝐽𝐾 ∈ (1..^5)))
4847imp 406 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 5 ∧ 𝐾𝐽) → 𝐾 ∈ (1..^5))
4948ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → 𝐾 ∈ (1..^5))
50 plusmod5ne 47349 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝑋 + 𝐾) mod 5) ≠ 𝑋)
5138, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → ((𝑋 + 𝐾) mod 5) ≠ 𝑋)
52 oveq2 7361 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 = 5 → ((𝑋 + 𝐾) mod 𝑁) = ((𝑋 + 𝐾) mod 5))
5352neeq1d 2984 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 5 → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋 + 𝐾) mod 5) ≠ 𝑋))
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 5 ∧ 𝐾𝐽) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋 + 𝐾) mod 5) ≠ 𝑋))
5554ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋 + 𝐾) mod 5) ≠ 𝑋))
5651, 55mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑋 ∈ (0..^𝑁)) → ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋)
5756ex 412 . . . . . . . . . . . . . . . 16 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → (𝑋 ∈ (0..^𝑁) → ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋))
5857adantl 481 . . . . . . . . . . . . . . 15 ((𝑋 = 𝑥 ∧ ((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊)) → (𝑋 ∈ (0..^𝑁) → ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋))
5933, 58sylbird 260 . . . . . . . . . . . . . 14 ((𝑋 = 𝑥 ∧ ((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊)) → (𝑥 ∈ (0..^𝑁) → ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋))
6059impr 454 . . . . . . . . . . . . 13 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋)
61 neeq2 2988 . . . . . . . . . . . . . 14 (𝑋 = 𝑥 → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥))
6261adantr 480 . . . . . . . . . . . . 13 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑋 ↔ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥))
6360, 62mpbid 232 . . . . . . . . . . . 12 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥)
6463orcd 873 . . . . . . . . . . 11 ((𝑋 = 𝑥 ∧ (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁))) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥))
6564ex 412 . . . . . . . . . 10 (𝑋 = 𝑥 → ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥)))
66 olc 868 . . . . . . . . . . 11 (𝑋𝑥 → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥))
6766a1d 25 . . . . . . . . . 10 (𝑋𝑥 → ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥)))
6865, 67pm2.61ine 3008 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥))
6910, 11opthne 5429 . . . . . . . . . . . 12 (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ↔ (1 ≠ 1 ∨ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥))
70 neirr 2934 . . . . . . . . . . . . 13 ¬ 1 ≠ 1
7170biorfi 938 . . . . . . . . . . . 12 (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥 ↔ (1 ≠ 1 ∨ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥))
7269, 71bitr4i 278 . . . . . . . . . . 11 (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ↔ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥)
7372a1i 11 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ↔ ((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥))
74 opthneg 5428 . . . . . . . . . . . 12 ((0 ∈ V ∧ 𝑋𝑊) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ↔ (0 ≠ 0 ∨ 𝑋𝑥)))
7527, 74syl 17 . . . . . . . . . . 11 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ↔ (0 ≠ 0 ∨ 𝑋𝑥)))
76 neirr 2934 . . . . . . . . . . . 12 ¬ 0 ≠ 0
7776biorfi 938 . . . . . . . . . . 11 (𝑋𝑥 ↔ (0 ≠ 0 ∨ 𝑋𝑥))
7875, 77bitr4di 289 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩ ↔ 𝑋𝑥))
7973, 78orbi12d 918 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩) ↔ (((𝑋 + 𝐾) mod 𝑁) ≠ 𝑥𝑋𝑥)))
8068, 79mpbird 257 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩))
8131, 80jca 511 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩) ∧ (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩)))
82 opex 5411 . . . . . . . . . 10 ⟨1, 𝑥⟩ ∈ V
834, 82pm3.2i 470 . . . . . . . . 9 (⟨0, 𝑥⟩ ∈ V ∧ ⟨1, 𝑥⟩ ∈ V)
843, 83pm3.2i 470 . . . . . . . 8 ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨1, 𝑥⟩ ∈ V))
85 prneimg2 4809 . . . . . . . 8 (((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V) ∧ (⟨0, 𝑥⟩ ∈ V ∧ ⟨1, 𝑥⟩ ∈ V)) → ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩) ∧ (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩))))
8684, 85mp1i 13 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨0, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩) ∧ (⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∨ ⟨0, 𝑋⟩ ≠ ⟨0, 𝑥⟩))))
8781, 86mpbird 257 . . . . . 6 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩})
88 opex 5411 . . . . . . . . 9 ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V
8982, 88pm3.2i 470 . . . . . . . 8 (⟨1, 𝑥⟩ ∈ V ∧ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V)
903, 89pm3.2i 470 . . . . . . 7 ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V) ∧ (⟨1, 𝑥⟩ ∈ V ∧ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V))
9122a1i 11 . . . . . . . . . . 11 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → 0 ≠ 1)
9291orcd 873 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (0 ≠ 1 ∨ 𝑋 ≠ ((𝑥 + 𝐾) mod 𝑁)))
93 opthneg 5428 . . . . . . . . . . 11 ((0 ∈ V ∧ 𝑋𝑊) → (⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ↔ (0 ≠ 1 ∨ 𝑋 ≠ ((𝑥 + 𝐾) mod 𝑁))))
9427, 93syl 17 . . . . . . . . . 10 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ↔ (0 ≠ 1 ∨ 𝑋 ≠ ((𝑥 + 𝐾) mod 𝑁))))
9592, 94mpbird 257 . . . . . . . . 9 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)
9630, 95jca 511 . . . . . . . 8 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩))
9796olcd 874 . . . . . . 7 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩) ∨ (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)))
98 prneimg 4808 . . . . . . 7 (((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ∈ V ∧ ⟨0, 𝑋⟩ ∈ V) ∧ (⟨1, 𝑥⟩ ∈ V ∧ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ ∈ V)) → (((⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩) ∨ (⟨0, 𝑋⟩ ≠ ⟨1, 𝑥⟩ ∧ ⟨0, 𝑋⟩ ≠ ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩)) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
9990, 97, 98mpsyl 68 . . . . . 6 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
10021, 87, 993jca 1128 . . . . 5 ((((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) ∧ 𝑥 ∈ (0..^𝑁)) → ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
101100ralrimiva 3121 . . . 4 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ∀𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
102 ralnex 3055 . . . . 5 (∀𝑥 ∈ (0..^𝑁) ¬ ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ¬ ∃𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
103 3ioran 1105 . . . . . . 7 (¬ ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
104 df-ne 2926 . . . . . . . 8 ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩})
105 df-ne 2926 . . . . . . . 8 ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩})
106 df-ne 2926 . . . . . . . 8 ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})
107104, 105, 1063anbi123i 1155 . . . . . . 7 (({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
108103, 107bitr4i 278 . . . . . 6 (¬ ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
109108ralbii 3075 . . . . 5 (∀𝑥 ∈ (0..^𝑁) ¬ ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∀𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
110102, 109bitr3i 277 . . . 4 (¬ ∃𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ ∀𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∧ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ≠ {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
111101, 110sylibr 234 . . 3 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ¬ ∃𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
112 5eluz3 12803 . . . . . 6 5 ∈ (ℤ‘3)
113 eleq1 2816 . . . . . 6 (𝑁 = 5 → (𝑁 ∈ (ℤ‘3) ↔ 5 ∈ (ℤ‘3)))
114112, 113mpbiri 258 . . . . 5 (𝑁 = 5 → 𝑁 ∈ (ℤ‘3))
115 eqid 2729 . . . . . 6 (0..^𝑁) = (0..^𝑁)
116 gpg5nbgrvtx03starlem1.g . . . . . 6 𝐺 = (𝑁 gPetersenGr 𝐾)
117 gpg5nbgrvtx03starlem1.e . . . . . 6 𝐸 = (Edg‘𝐺)
118115, 42, 116, 117gpgedgel 48054 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ↔ ∃𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
119114, 118sylan 580 . . . 4 ((𝑁 = 5 ∧ 𝐾𝐽) → ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ↔ ∃𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
120119adantr 480 . . 3 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸 ↔ ∃𝑥 ∈ (0..^𝑁)({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
121111, 120mtbird 325 . 2 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸)
122 df-nel 3030 . 2 ({⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∉ 𝐸 ↔ ¬ {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∈ 𝐸)
123121, 122sylibr 234 1 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ 𝑋𝑊) → {⟨1, ((𝑋 + 𝐾) mod 𝑁)⟩, ⟨0, 𝑋⟩} ∉ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  Vcvv 3438  {cpr 4581  cop 4585  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031   / cdiv 11796  cn 12147  2c2 12202  3c3 12203  5c5 12205  cuz 12754  ..^cfzo 13576  cceil 13714   mod cmo 13792  Vtxcvtx 28960  Edgcedg 29011   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-mod 13793  df-hash 14257  df-dvds 16183  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-iedg 28963  df-edg 29012  df-gpg 48045
This theorem is referenced by:  gpg5nbgr3star  48085
  Copyright terms: Public domain W3C validator