![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prpssnq | Structured version Visualization version GIF version |
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prpssnq | ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 10097 | . 2 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl3 1247 | . 2 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ⊊ Q) | |
3 | 1, 2 | sylbi 209 | 1 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∀wal 1651 ∈ wcel 2157 ∀wral 3088 ∃wrex 3089 Vcvv 3384 ⊊ wpss 3769 ∅c0 4114 class class class wbr 4842 Qcnq 9961 <Q cltq 9967 Pcnp 9968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-v 3386 df-in 3775 df-ss 3782 df-pss 3784 df-np 10090 |
This theorem is referenced by: elprnq 10100 npomex 10105 genpnnp 10114 prlem934 10142 ltexprlem2 10146 reclem2pr 10157 suplem1pr 10161 wuncn 10278 |
Copyright terms: Public domain | W3C validator |