MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prpssnq Structured version   Visualization version   GIF version

Theorem prpssnq 10414
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prpssnq (𝐴P𝐴Q)

Proof of Theorem prpssnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 10412 . 2 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2 simpl3 1189 . 2 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴Q)
31, 2sylbi 219 1 (𝐴P𝐴Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1535  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wpss 3939  c0 4293   class class class wbr 5068  Qcnq 10276   <Q cltq 10282  Pcnp 10283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-v 3498  df-in 3945  df-ss 3954  df-pss 3956  df-np 10405
This theorem is referenced by:  elprnq  10415  npomex  10420  genpnnp  10429  prlem934  10457  ltexprlem2  10461  reclem2pr  10472  suplem1pr  10476  wuncn  10594
  Copyright terms: Public domain W3C validator