| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prpssnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prpssnq | ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnpi 11007 | . 2 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
| 2 | simpl3 1194 | . 2 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ⊊ Q) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊊ wpss 3932 ∅c0 4313 class class class wbr 5124 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-pss 3951 df-np 11000 |
| This theorem is referenced by: elprnq 11010 npomex 11015 genpnnp 11024 prlem934 11052 ltexprlem2 11056 reclem2pr 11067 suplem1pr 11071 wuncn 11189 |
| Copyright terms: Public domain | W3C validator |