![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prpssnq | Structured version Visualization version GIF version |
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prpssnq | ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 11057 | . 2 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl3 1193 | . 2 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ⊊ Q) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊊ wpss 3977 ∅c0 4352 class class class wbr 5166 Qcnq 10921 <Q cltq 10927 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-pss 3996 df-np 11050 |
This theorem is referenced by: elprnq 11060 npomex 11065 genpnnp 11074 prlem934 11102 ltexprlem2 11106 reclem2pr 11117 suplem1pr 11121 wuncn 11239 |
Copyright terms: Public domain | W3C validator |