MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prpssnq Structured version   Visualization version   GIF version

Theorem prpssnq 10796
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prpssnq (𝐴P𝐴Q)

Proof of Theorem prpssnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 10794 . 2 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2 simpl3 1193 . 2 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴Q)
31, 2sylbi 216 1 (𝐴P𝐴Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087  wal 1537  wcel 2104  wral 3061  wrex 3070  Vcvv 3437  wpss 3893  c0 4262   class class class wbr 5081  Qcnq 10658   <Q cltq 10664  Pcnp 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3439  df-in 3899  df-ss 3909  df-pss 3911  df-np 10787
This theorem is referenced by:  elprnq  10797  npomex  10802  genpnnp  10811  prlem934  10839  ltexprlem2  10843  reclem2pr  10854  suplem1pr  10858  wuncn  10976
  Copyright terms: Public domain W3C validator