| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prpssnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prpssnq | ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnpi 10874 | . 2 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
| 2 | simpl3 1194 | . 2 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ⊊ Q) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊊ wpss 3898 ∅c0 4278 class class class wbr 5086 Qcnq 10738 <Q cltq 10744 Pcnp 10745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3914 df-pss 3917 df-np 10867 |
| This theorem is referenced by: elprnq 10877 npomex 10882 genpnnp 10891 prlem934 10919 ltexprlem2 10923 reclem2pr 10934 suplem1pr 10938 wuncn 11056 |
| Copyright terms: Public domain | W3C validator |