![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npomex | Structured version Visualization version GIF version |
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence ℝ, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10988 and nsmallnq 10972). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npomex | ⊢ (𝐴 ∈ P → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | prnmax 10990 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
3 | 2 | ralrimiva 3147 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
4 | prpssnq 10985 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
5 | 4 | pssssd 4098 | . . . . . . . . . 10 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
6 | ltsonq 10964 | . . . . . . . . . 10 ⊢ <Q Or Q | |
7 | soss 5609 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ Q → ( <Q Or Q → <Q Or 𝐴)) | |
8 | 5, 6, 7 | mpisyl 21 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → <Q Or 𝐴) |
9 | 8 | adantr 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → <Q Or 𝐴) |
10 | simpr 486 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
11 | prn0 10984 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
12 | 11 | adantr 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) |
13 | fimax2g 9289 | . . . . . . . 8 ⊢ (( <Q Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) | |
14 | 9, 10, 12, 13 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) |
15 | ralnex 3073 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
16 | 15 | rexbii 3095 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
17 | rexnal 3101 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
18 | 16, 17 | bitri 275 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
19 | 14, 18 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
20 | 19 | ex 414 | . . . . 5 ⊢ (𝐴 ∈ P → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) |
21 | 3, 20 | mt2d 136 | . . . 4 ⊢ (𝐴 ∈ P → ¬ 𝐴 ∈ Fin) |
22 | nelne1 3040 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin) | |
23 | 1, 21, 22 | syl2anc 585 | . . 3 ⊢ (𝐴 ∈ P → V ≠ Fin) |
24 | 23 | necomd 2997 | . 2 ⊢ (𝐴 ∈ P → Fin ≠ V) |
25 | fineqv 9263 | . . 3 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
26 | 25 | necon1abii 2990 | . 2 ⊢ (Fin ≠ V ↔ ω ∈ V) |
27 | 24, 26 | sylib 217 | 1 ⊢ (𝐴 ∈ P → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 ∅c0 4323 class class class wbr 5149 Or wor 5588 ωcom 7855 Fincfn 8939 Qcnq 10847 <Q cltq 10853 Pcnp 10854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-ni 10867 df-mi 10869 df-lti 10870 df-ltpq 10905 df-enq 10906 df-nq 10907 df-ltnq 10913 df-np 10976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |