| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > npomex | Structured version Visualization version GIF version | ||
| Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence ℝ, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 11012 and nsmallnq 10996). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| npomex | ⊢ (𝐴 ∈ P → ω ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
| 2 | prnmax 11014 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
| 3 | 2 | ralrimiva 3133 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
| 4 | prpssnq 11009 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
| 5 | 4 | pssssd 4080 | . . . . . . . . . 10 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
| 6 | ltsonq 10988 | . . . . . . . . . 10 ⊢ <Q Or Q | |
| 7 | soss 5586 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ Q → ( <Q Or Q → <Q Or 𝐴)) | |
| 8 | 5, 6, 7 | mpisyl 21 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → <Q Or 𝐴) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → <Q Or 𝐴) |
| 10 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
| 11 | prn0 11008 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) |
| 13 | fimax2g 9299 | . . . . . . . 8 ⊢ (( <Q Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) | |
| 14 | 9, 10, 12, 13 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) |
| 15 | ralnex 3063 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
| 16 | 15 | rexbii 3084 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
| 17 | rexnal 3090 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
| 18 | 16, 17 | bitri 275 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
| 19 | 14, 18 | sylib 218 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ P → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) |
| 21 | 3, 20 | mt2d 136 | . . . 4 ⊢ (𝐴 ∈ P → ¬ 𝐴 ∈ Fin) |
| 22 | nelne1 3030 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin) | |
| 23 | 1, 21, 22 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ P → V ≠ Fin) |
| 24 | 23 | necomd 2988 | . 2 ⊢ (𝐴 ∈ P → Fin ≠ V) |
| 25 | fineqv 9276 | . . 3 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
| 26 | 25 | necon1abii 2981 | . 2 ⊢ (Fin ≠ V ↔ ω ∈ V) |
| 27 | 24, 26 | sylib 218 | 1 ⊢ (𝐴 ∈ P → ω ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 Or wor 5565 ωcom 7866 Fincfn 8964 Qcnq 10871 <Q cltq 10877 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-ni 10891 df-mi 10893 df-lti 10894 df-ltpq 10929 df-enq 10930 df-nq 10931 df-ltnq 10937 df-np 11000 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |