MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npomex Structured version   Visualization version   GIF version

Theorem npomex 10420
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10417 and nsmallnq 10401). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
npomex (𝐴P → ω ∈ V)

Proof of Theorem npomex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3514 . . . 4 (𝐴P𝐴 ∈ V)
2 prnmax 10419 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑦𝐴 𝑥 <Q 𝑦)
32ralrimiva 3184 . . . . 5 (𝐴P → ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
4 prpssnq 10414 . . . . . . . . . . 11 (𝐴P𝐴Q)
54pssssd 4076 . . . . . . . . . 10 (𝐴P𝐴Q)
6 ltsonq 10393 . . . . . . . . . 10 <Q Or Q
7 soss 5495 . . . . . . . . . 10 (𝐴Q → ( <Q Or Q → <Q Or 𝐴))
85, 6, 7mpisyl 21 . . . . . . . . 9 (𝐴P → <Q Or 𝐴)
98adantr 483 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → <Q Or 𝐴)
10 simpr 487 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → 𝐴 ∈ Fin)
11 prn0 10413 . . . . . . . . 9 (𝐴P𝐴 ≠ ∅)
1211adantr 483 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → 𝐴 ≠ ∅)
13 fimax2g 8766 . . . . . . . 8 (( <Q Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦)
149, 10, 12, 13syl3anc 1367 . . . . . . 7 ((𝐴P𝐴 ∈ Fin) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦)
15 ralnex 3238 . . . . . . . . 9 (∀𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦𝐴 𝑥 <Q 𝑦)
1615rexbii 3249 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐴 𝑥 <Q 𝑦)
17 rexnal 3240 . . . . . . . 8 (∃𝑥𝐴 ¬ ∃𝑦𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
1816, 17bitri 277 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
1914, 18sylib 220 . . . . . 6 ((𝐴P𝐴 ∈ Fin) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
2019ex 415 . . . . 5 (𝐴P → (𝐴 ∈ Fin → ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦))
213, 20mt2d 138 . . . 4 (𝐴P → ¬ 𝐴 ∈ Fin)
22 nelne1 3115 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin)
231, 21, 22syl2anc 586 . . 3 (𝐴P → V ≠ Fin)
2423necomd 3073 . 2 (𝐴P → Fin ≠ V)
25 fineqv 8735 . . 3 (¬ ω ∈ V ↔ Fin = V)
2625necon1abii 3066 . 2 (Fin ≠ V ↔ ω ∈ V)
2724, 26sylib 220 1 (𝐴P → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068   Or wor 5475  ωcom 7582  Fincfn 8511  Qcnq 10276   <Q cltq 10282  Pcnp 10283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-ni 10296  df-mi 10298  df-lti 10299  df-ltpq 10334  df-enq 10335  df-nq 10336  df-ltnq 10342  df-np 10405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator