Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > npomex | Structured version Visualization version GIF version |
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence ℝ, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10680 and nsmallnq 10664). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npomex | ⊢ (𝐴 ∈ P → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | prnmax 10682 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
3 | 2 | ralrimiva 3107 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
4 | prpssnq 10677 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
5 | 4 | pssssd 4028 | . . . . . . . . . 10 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
6 | ltsonq 10656 | . . . . . . . . . 10 ⊢ <Q Or Q | |
7 | soss 5514 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ Q → ( <Q Or Q → <Q Or 𝐴)) | |
8 | 5, 6, 7 | mpisyl 21 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → <Q Or 𝐴) |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → <Q Or 𝐴) |
10 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
11 | prn0 10676 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) |
13 | fimax2g 8990 | . . . . . . . 8 ⊢ (( <Q Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) | |
14 | 9, 10, 12, 13 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) |
15 | ralnex 3163 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
16 | 15 | rexbii 3177 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
17 | rexnal 3165 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
18 | 16, 17 | bitri 274 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
19 | 14, 18 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
20 | 19 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ P → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) |
21 | 3, 20 | mt2d 136 | . . . 4 ⊢ (𝐴 ∈ P → ¬ 𝐴 ∈ Fin) |
22 | nelne1 3040 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin) | |
23 | 1, 21, 22 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ P → V ≠ Fin) |
24 | 23 | necomd 2998 | . 2 ⊢ (𝐴 ∈ P → Fin ≠ V) |
25 | fineqv 8967 | . . 3 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
26 | 25 | necon1abii 2991 | . 2 ⊢ (Fin ≠ V ↔ ω ∈ V) |
27 | 24, 26 | sylib 217 | 1 ⊢ (𝐴 ∈ P → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 Or wor 5493 ωcom 7687 Fincfn 8691 Qcnq 10539 <Q cltq 10545 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-oadd 8271 df-omul 8272 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-ni 10559 df-mi 10561 df-lti 10562 df-ltpq 10597 df-enq 10598 df-nq 10599 df-ltnq 10605 df-np 10668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |