MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npomex Structured version   Visualization version   GIF version

Theorem npomex 10407
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10404 and nsmallnq 10388). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
npomex (𝐴P → ω ∈ V)

Proof of Theorem npomex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . 4 (𝐴P𝐴 ∈ V)
2 prnmax 10406 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑦𝐴 𝑥 <Q 𝑦)
32ralrimiva 3149 . . . . 5 (𝐴P → ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
4 prpssnq 10401 . . . . . . . . . . 11 (𝐴P𝐴Q)
54pssssd 4025 . . . . . . . . . 10 (𝐴P𝐴Q)
6 ltsonq 10380 . . . . . . . . . 10 <Q Or Q
7 soss 5457 . . . . . . . . . 10 (𝐴Q → ( <Q Or Q → <Q Or 𝐴))
85, 6, 7mpisyl 21 . . . . . . . . 9 (𝐴P → <Q Or 𝐴)
98adantr 484 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → <Q Or 𝐴)
10 simpr 488 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → 𝐴 ∈ Fin)
11 prn0 10400 . . . . . . . . 9 (𝐴P𝐴 ≠ ∅)
1211adantr 484 . . . . . . . 8 ((𝐴P𝐴 ∈ Fin) → 𝐴 ≠ ∅)
13 fimax2g 8748 . . . . . . . 8 (( <Q Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦)
149, 10, 12, 13syl3anc 1368 . . . . . . 7 ((𝐴P𝐴 ∈ Fin) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦)
15 ralnex 3199 . . . . . . . . 9 (∀𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦𝐴 𝑥 <Q 𝑦)
1615rexbii 3210 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐴 𝑥 <Q 𝑦)
17 rexnal 3201 . . . . . . . 8 (∃𝑥𝐴 ¬ ∃𝑦𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
1816, 17bitri 278 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
1914, 18sylib 221 . . . . . 6 ((𝐴P𝐴 ∈ Fin) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦)
2019ex 416 . . . . 5 (𝐴P → (𝐴 ∈ Fin → ¬ ∀𝑥𝐴𝑦𝐴 𝑥 <Q 𝑦))
213, 20mt2d 138 . . . 4 (𝐴P → ¬ 𝐴 ∈ Fin)
22 nelne1 3083 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin)
231, 21, 22syl2anc 587 . . 3 (𝐴P → V ≠ Fin)
2423necomd 3042 . 2 (𝐴P → Fin ≠ V)
25 fineqv 8717 . . 3 (¬ ω ∈ V ↔ Fin = V)
2625necon1abii 3035 . 2 (Fin ≠ V ↔ ω ∈ V)
2724, 26sylib 221 1 (𝐴P → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030   Or wor 5437  ωcom 7560  Fincfn 8492  Qcnq 10263   <Q cltq 10269  Pcnp 10270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-ni 10283  df-mi 10285  df-lti 10286  df-ltpq 10321  df-enq 10322  df-nq 10323  df-ltnq 10329  df-np 10392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator