![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > npomex | Structured version Visualization version GIF version |
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence ℝ, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10984 and nsmallnq 10968). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
npomex | ⊢ (𝐴 ∈ P → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | prnmax 10986 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
3 | 2 | ralrimiva 3146 | . . . . 5 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
4 | prpssnq 10981 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
5 | 4 | pssssd 4096 | . . . . . . . . . 10 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
6 | ltsonq 10960 | . . . . . . . . . 10 ⊢ <Q Or Q | |
7 | soss 5607 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ Q → ( <Q Or Q → <Q Or 𝐴)) | |
8 | 5, 6, 7 | mpisyl 21 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → <Q Or 𝐴) |
9 | 8 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → <Q Or 𝐴) |
10 | simpr 485 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | |
11 | prn0 10980 | . . . . . . . . 9 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
12 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅) |
13 | fimax2g 9285 | . . . . . . . 8 ⊢ (( <Q Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) | |
14 | 9, 10, 12, 13 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦) |
15 | ralnex 3072 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
16 | 15 | rexbii 3094 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
17 | rexnal 3100 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) | |
18 | 16, 17 | bitri 274 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
19 | 14, 18 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦) |
20 | 19 | ex 413 | . . . . 5 ⊢ (𝐴 ∈ P → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) |
21 | 3, 20 | mt2d 136 | . . . 4 ⊢ (𝐴 ∈ P → ¬ 𝐴 ∈ Fin) |
22 | nelne1 3039 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → V ≠ Fin) | |
23 | 1, 21, 22 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ P → V ≠ Fin) |
24 | 23 | necomd 2996 | . 2 ⊢ (𝐴 ∈ P → Fin ≠ V) |
25 | fineqv 9259 | . . 3 ⊢ (¬ ω ∈ V ↔ Fin = V) | |
26 | 25 | necon1abii 2989 | . 2 ⊢ (Fin ≠ V ↔ ω ∈ V) |
27 | 24, 26 | sylib 217 | 1 ⊢ (𝐴 ∈ P → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3947 ∅c0 4321 class class class wbr 5147 Or wor 5586 ωcom 7851 Fincfn 8935 Qcnq 10843 <Q cltq 10849 Pcnp 10850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-ni 10863 df-mi 10865 df-lti 10866 df-ltpq 10901 df-enq 10902 df-nq 10903 df-ltnq 10909 df-np 10972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |