MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprnq Structured version   Visualization version   GIF version

Theorem elprnq 11060
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elprnq ((𝐴P𝐵𝐴) → 𝐵Q)

Proof of Theorem elprnq
StepHypRef Expression
1 prpssnq 11059 . . 3 (𝐴P𝐴Q)
21pssssd 4123 . 2 (𝐴P𝐴Q)
32sselda 4008 1 ((𝐴P𝐵𝐴) → 𝐵Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Qcnq 10921  Pcnp 10928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-pss 3996  df-np 11050
This theorem is referenced by:  prub  11063  genpv  11068  genpdm  11071  genpss  11073  genpnnp  11074  genpnmax  11076  addclprlem1  11085  addclprlem2  11086  mulclprlem  11088  distrlem4pr  11095  1idpr  11098  psslinpr  11100  prlem934  11102  ltaddpr  11103  ltexprlem2  11106  ltexprlem3  11107  ltexprlem6  11110  ltexprlem7  11111  prlem936  11116  reclem2pr  11117  reclem3pr  11118  reclem4pr  11119
  Copyright terms: Public domain W3C validator