MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprnq Structured version   Visualization version   GIF version

Theorem elprnq 10904
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elprnq ((𝐴P𝐵𝐴) → 𝐵Q)

Proof of Theorem elprnq
StepHypRef Expression
1 prpssnq 10903 . . 3 (𝐴P𝐴Q)
21pssssd 4053 . 2 (𝐴P𝐴Q)
32sselda 3937 1 ((𝐴P𝐵𝐴) → 𝐵Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Qcnq 10765  Pcnp 10772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3440  df-ss 3922  df-pss 3925  df-np 10894
This theorem is referenced by:  prub  10907  genpv  10912  genpdm  10915  genpss  10917  genpnnp  10918  genpnmax  10920  addclprlem1  10929  addclprlem2  10930  mulclprlem  10932  distrlem4pr  10939  1idpr  10942  psslinpr  10944  prlem934  10946  ltaddpr  10947  ltexprlem2  10950  ltexprlem3  10951  ltexprlem6  10954  ltexprlem7  10955  prlem936  10960  reclem2pr  10961  reclem3pr  10962  reclem4pr  10963
  Copyright terms: Public domain W3C validator