| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prpssnq 10943 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
| 2 | 1 | pssssd 4063 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
| 3 | 2 | sselda 3946 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Qcnq 10805 Pcnp 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-pss 3934 df-np 10934 |
| This theorem is referenced by: prub 10947 genpv 10952 genpdm 10955 genpss 10957 genpnnp 10958 genpnmax 10960 addclprlem1 10969 addclprlem2 10970 mulclprlem 10972 distrlem4pr 10979 1idpr 10982 psslinpr 10984 prlem934 10986 ltaddpr 10987 ltexprlem2 10990 ltexprlem3 10991 ltexprlem6 10994 ltexprlem7 10995 prlem936 11000 reclem2pr 11001 reclem3pr 11002 reclem4pr 11003 |
| Copyright terms: Public domain | W3C validator |