| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prpssnq 11009 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
| 2 | 1 | pssssd 4080 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
| 3 | 2 | sselda 3963 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Qcnq 10871 Pcnp 10878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-pss 3951 df-np 11000 |
| This theorem is referenced by: prub 11013 genpv 11018 genpdm 11021 genpss 11023 genpnnp 11024 genpnmax 11026 addclprlem1 11035 addclprlem2 11036 mulclprlem 11038 distrlem4pr 11045 1idpr 11048 psslinpr 11050 prlem934 11052 ltaddpr 11053 ltexprlem2 11056 ltexprlem3 11057 ltexprlem6 11060 ltexprlem7 11061 prlem936 11066 reclem2pr 11067 reclem3pr 11068 reclem4pr 11069 |
| Copyright terms: Public domain | W3C validator |