![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 10985 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4098 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 3983 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Qcnq 10847 Pcnp 10854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-pss 3968 df-np 10976 |
This theorem is referenced by: prub 10989 genpv 10994 genpdm 10997 genpss 10999 genpnnp 11000 genpnmax 11002 addclprlem1 11011 addclprlem2 11012 mulclprlem 11014 distrlem4pr 11021 1idpr 11024 psslinpr 11026 prlem934 11028 ltaddpr 11029 ltexprlem2 11032 ltexprlem3 11033 ltexprlem6 11036 ltexprlem7 11037 prlem936 11042 reclem2pr 11043 reclem3pr 11044 reclem4pr 11045 |
Copyright terms: Public domain | W3C validator |