| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prpssnq 10950 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
| 2 | 1 | pssssd 4066 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
| 3 | 2 | sselda 3949 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Qcnq 10812 Pcnp 10819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-pss 3937 df-np 10941 |
| This theorem is referenced by: prub 10954 genpv 10959 genpdm 10962 genpss 10964 genpnnp 10965 genpnmax 10967 addclprlem1 10976 addclprlem2 10977 mulclprlem 10979 distrlem4pr 10986 1idpr 10989 psslinpr 10991 prlem934 10993 ltaddpr 10994 ltexprlem2 10997 ltexprlem3 10998 ltexprlem6 11001 ltexprlem7 11002 prlem936 11007 reclem2pr 11008 reclem3pr 11009 reclem4pr 11010 |
| Copyright terms: Public domain | W3C validator |