![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 11024 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4093 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 3978 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 Qcnq 10886 Pcnp 10893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-v 3464 df-ss 3963 df-pss 3966 df-np 11015 |
This theorem is referenced by: prub 11028 genpv 11033 genpdm 11036 genpss 11038 genpnnp 11039 genpnmax 11041 addclprlem1 11050 addclprlem2 11051 mulclprlem 11053 distrlem4pr 11060 1idpr 11063 psslinpr 11065 prlem934 11067 ltaddpr 11068 ltexprlem2 11071 ltexprlem3 11072 ltexprlem6 11075 ltexprlem7 11076 prlem936 11081 reclem2pr 11082 reclem3pr 11083 reclem4pr 11084 |
Copyright terms: Public domain | W3C validator |