Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 10677 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4028 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 3917 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Qcnq 10539 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-pss 3902 df-np 10668 |
This theorem is referenced by: prub 10681 genpv 10686 genpdm 10689 genpss 10691 genpnnp 10692 genpnmax 10694 addclprlem1 10703 addclprlem2 10704 mulclprlem 10706 distrlem4pr 10713 1idpr 10716 psslinpr 10718 prlem934 10720 ltaddpr 10721 ltexprlem2 10724 ltexprlem3 10725 ltexprlem6 10728 ltexprlem7 10729 prlem936 10734 reclem2pr 10735 reclem3pr 10736 reclem4pr 10737 |
Copyright terms: Public domain | W3C validator |