| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prpssnq 10903 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
| 2 | 1 | pssssd 4053 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
| 3 | 2 | sselda 3937 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Qcnq 10765 Pcnp 10772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3440 df-ss 3922 df-pss 3925 df-np 10894 |
| This theorem is referenced by: prub 10907 genpv 10912 genpdm 10915 genpss 10917 genpnnp 10918 genpnmax 10920 addclprlem1 10929 addclprlem2 10930 mulclprlem 10932 distrlem4pr 10939 1idpr 10942 psslinpr 10944 prlem934 10946 ltaddpr 10947 ltexprlem2 10950 ltexprlem3 10951 ltexprlem6 10954 ltexprlem7 10955 prlem936 10960 reclem2pr 10961 reclem3pr 10962 reclem4pr 10963 |
| Copyright terms: Public domain | W3C validator |