Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 10746 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4032 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 3921 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Qcnq 10608 Pcnp 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-pss 3906 df-np 10737 |
This theorem is referenced by: prub 10750 genpv 10755 genpdm 10758 genpss 10760 genpnnp 10761 genpnmax 10763 addclprlem1 10772 addclprlem2 10773 mulclprlem 10775 distrlem4pr 10782 1idpr 10785 psslinpr 10787 prlem934 10789 ltaddpr 10790 ltexprlem2 10793 ltexprlem3 10794 ltexprlem6 10797 ltexprlem7 10798 prlem936 10803 reclem2pr 10804 reclem3pr 10805 reclem4pr 10806 |
Copyright terms: Public domain | W3C validator |