| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version | ||
| Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prpssnq 10878 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
| 2 | 1 | pssssd 4050 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
| 3 | 2 | sselda 3934 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Qcnq 10740 Pcnp 10747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-v 3438 df-ss 3919 df-pss 3922 df-np 10869 |
| This theorem is referenced by: prub 10882 genpv 10887 genpdm 10890 genpss 10892 genpnnp 10893 genpnmax 10895 addclprlem1 10904 addclprlem2 10905 mulclprlem 10907 distrlem4pr 10914 1idpr 10917 psslinpr 10919 prlem934 10921 ltaddpr 10922 ltexprlem2 10925 ltexprlem3 10926 ltexprlem6 10929 ltexprlem7 10930 prlem936 10935 reclem2pr 10936 reclem3pr 10937 reclem4pr 10938 |
| Copyright terms: Public domain | W3C validator |