![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 11059 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4123 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 4008 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Qcnq 10921 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-pss 3996 df-np 11050 |
This theorem is referenced by: prub 11063 genpv 11068 genpdm 11071 genpss 11073 genpnnp 11074 genpnmax 11076 addclprlem1 11085 addclprlem2 11086 mulclprlem 11088 distrlem4pr 11095 1idpr 11098 psslinpr 11100 prlem934 11102 ltaddpr 11103 ltexprlem2 11106 ltexprlem3 11107 ltexprlem6 11110 ltexprlem7 11111 prlem936 11116 reclem2pr 11117 reclem3pr 11118 reclem4pr 11119 |
Copyright terms: Public domain | W3C validator |