MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprnq Structured version   Visualization version   GIF version

Theorem elprnq 10944
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elprnq ((𝐴P𝐵𝐴) → 𝐵Q)

Proof of Theorem elprnq
StepHypRef Expression
1 prpssnq 10943 . . 3 (𝐴P𝐴Q)
21pssssd 4063 . 2 (𝐴P𝐴Q)
32sselda 3946 1 ((𝐴P𝐵𝐴) → 𝐵Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Qcnq 10805  Pcnp 10812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-pss 3934  df-np 10934
This theorem is referenced by:  prub  10947  genpv  10952  genpdm  10955  genpss  10957  genpnnp  10958  genpnmax  10960  addclprlem1  10969  addclprlem2  10970  mulclprlem  10972  distrlem4pr  10979  1idpr  10982  psslinpr  10984  prlem934  10986  ltaddpr  10987  ltexprlem2  10990  ltexprlem3  10991  ltexprlem6  10994  ltexprlem7  10995  prlem936  11000  reclem2pr  11001  reclem3pr  11002  reclem4pr  11003
  Copyright terms: Public domain W3C validator