Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 10851 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4048 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 3935 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2106 Qcnq 10713 Pcnp 10720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-v 3444 df-in 3908 df-ss 3918 df-pss 3920 df-np 10842 |
This theorem is referenced by: prub 10855 genpv 10860 genpdm 10863 genpss 10865 genpnnp 10866 genpnmax 10868 addclprlem1 10877 addclprlem2 10878 mulclprlem 10880 distrlem4pr 10887 1idpr 10890 psslinpr 10892 prlem934 10894 ltaddpr 10895 ltexprlem2 10898 ltexprlem3 10899 ltexprlem6 10902 ltexprlem7 10903 prlem936 10908 reclem2pr 10909 reclem3pr 10910 reclem4pr 10911 |
Copyright terms: Public domain | W3C validator |