![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprnq | Structured version Visualization version GIF version |
Description: A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elprnq | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prpssnq 10987 | . . 3 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | |
2 | 1 | pssssd 4096 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ⊆ Q) |
3 | 2 | sselda 3981 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 Qcnq 10849 Pcnp 10856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-v 3474 df-in 3954 df-ss 3964 df-pss 3966 df-np 10978 |
This theorem is referenced by: prub 10991 genpv 10996 genpdm 10999 genpss 11001 genpnnp 11002 genpnmax 11004 addclprlem1 11013 addclprlem2 11014 mulclprlem 11016 distrlem4pr 11023 1idpr 11026 psslinpr 11028 prlem934 11030 ltaddpr 11031 ltexprlem2 11034 ltexprlem3 11035 ltexprlem6 11038 ltexprlem7 11039 prlem936 11044 reclem2pr 11045 reclem3pr 11046 reclem4pr 11047 |
Copyright terms: Public domain | W3C validator |