MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prn0 Structured version   Visualization version   GIF version

Theorem prn0 10949
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prn0 (𝐴P𝐴 ≠ ∅)

Proof of Theorem prn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 10948 . . 3 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2 simpl2 1193 . . 3 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴)
31, 2sylbi 217 . 2 (𝐴P → ∅ ⊊ 𝐴)
4 0pss 4413 . 2 (∅ ⊊ 𝐴𝐴 ≠ ∅)
53, 4sylib 218 1 (𝐴P𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wpss 3918  c0 4299   class class class wbr 5110  Qcnq 10812   <Q cltq 10818  Pcnp 10819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-ss 3934  df-pss 3937  df-nul 4300  df-np 10941
This theorem is referenced by:  0npr  10952  npomex  10956  genpn0  10963  prlem934  10993  ltaddpr  10994  prlem936  11007  reclem2pr  11008  suplem1pr  11012
  Copyright terms: Public domain W3C validator