MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prn0 Structured version   Visualization version   GIF version

Theorem prn0 10850
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prn0 (𝐴P𝐴 ≠ ∅)

Proof of Theorem prn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 10849 . . 3 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2 simpl2 1192 . . 3 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴)
31, 2sylbi 216 . 2 (𝐴P → ∅ ⊊ 𝐴)
4 0pss 4395 . 2 (∅ ⊊ 𝐴𝐴 ≠ ∅)
53, 4sylib 217 1 (𝐴P𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087  wal 1539  wcel 2106  wne 2941  wral 3062  wrex 3071  Vcvv 3442  wpss 3902  c0 4273   class class class wbr 5096  Qcnq 10713   <Q cltq 10719  Pcnp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-v 3444  df-dif 3904  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-np 10842
This theorem is referenced by:  0npr  10853  npomex  10857  genpn0  10864  prlem934  10894  ltaddpr  10895  prlem936  10908  reclem2pr  10909  suplem1pr  10913
  Copyright terms: Public domain W3C validator