![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prn0 | Structured version Visualization version GIF version |
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prn0 | ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 10098 | . . 3 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl2 1245 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴) | |
3 | 1, 2 | sylbi 209 | . 2 ⊢ (𝐴 ∈ P → ∅ ⊊ 𝐴) |
4 | 0pss 4209 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | sylib 210 | 1 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∀wal 1651 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ∃wrex 3090 Vcvv 3385 ⊊ wpss 3770 ∅c0 4115 class class class wbr 4843 Qcnq 9962 <Q cltq 9968 Pcnp 9969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-np 10091 |
This theorem is referenced by: 0npr 10102 npomex 10106 genpn0 10113 prlem934 10143 ltaddpr 10144 prlem936 10157 reclem2pr 10158 suplem1pr 10162 |
Copyright terms: Public domain | W3C validator |