MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prn0 Structured version   Visualization version   GIF version

Theorem prn0 10729
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prn0 (𝐴P𝐴 ≠ ∅)

Proof of Theorem prn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 10728 . . 3 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2 simpl2 1190 . . 3 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴)
31, 2sylbi 216 . 2 (𝐴P → ∅ ⊊ 𝐴)
4 0pss 4383 . 2 (∅ ⊊ 𝐴𝐴 ≠ ∅)
53, 4sylib 217 1 (𝐴P𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1539  wcel 2109  wne 2944  wral 3065  wrex 3066  Vcvv 3430  wpss 3892  c0 4261   class class class wbr 5078  Qcnq 10592   <Q cltq 10598  Pcnp 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-np 10721
This theorem is referenced by:  0npr  10732  npomex  10736  genpn0  10743  prlem934  10773  ltaddpr  10774  prlem936  10787  reclem2pr  10788  suplem1pr  10792
  Copyright terms: Public domain W3C validator