Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prn0 | Structured version Visualization version GIF version |
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prn0 | ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 10728 | . . 3 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl2 1190 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ∈ P → ∅ ⊊ 𝐴) |
4 | 0pss 4383 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wal 1539 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⊊ wpss 3892 ∅c0 4261 class class class wbr 5078 Qcnq 10592 <Q cltq 10598 Pcnp 10599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-np 10721 |
This theorem is referenced by: 0npr 10732 npomex 10736 genpn0 10743 prlem934 10773 ltaddpr 10774 prlem936 10787 reclem2pr 10788 suplem1pr 10792 |
Copyright terms: Public domain | W3C validator |