Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prn0 | Structured version Visualization version GIF version |
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prn0 | ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 10794 | . . 3 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl2 1192 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝐴 ∈ P → ∅ ⊊ 𝐴) |
4 | 0pss 4384 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | sylib 217 | 1 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 ∀wal 1537 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 Vcvv 3437 ⊊ wpss 3893 ∅c0 4262 class class class wbr 5081 Qcnq 10658 <Q cltq 10664 Pcnp 10665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-np 10787 |
This theorem is referenced by: 0npr 10798 npomex 10802 genpn0 10809 prlem934 10839 ltaddpr 10840 prlem936 10853 reclem2pr 10854 suplem1pr 10858 |
Copyright terms: Public domain | W3C validator |