MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem2pr Structured version   Visualization version   GIF version

Theorem reclem2pr 10151
Description: Lemma for Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem2pr (𝐴P𝐵P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem2pr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prpssnq 10093 . . . . . 6 (𝐴P𝐴Q)
2 pssnel 4235 . . . . . 6 (𝐴Q → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐴))
3 recclnq 10069 . . . . . . . . . . 11 (𝑥Q → (*Q𝑥) ∈ Q)
4 nsmallnq 10080 . . . . . . . . . . 11 ((*Q𝑥) ∈ Q → ∃𝑧 𝑧 <Q (*Q𝑥))
53, 4syl 17 . . . . . . . . . 10 (𝑥Q → ∃𝑧 𝑧 <Q (*Q𝑥))
65adantr 468 . . . . . . . . 9 ((𝑥Q ∧ ¬ 𝑥𝐴) → ∃𝑧 𝑧 <Q (*Q𝑥))
7 recrecnq 10070 . . . . . . . . . . . . . . . . 17 (𝑥Q → (*Q‘(*Q𝑥)) = 𝑥)
87eleq1d 2870 . . . . . . . . . . . . . . . 16 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ 𝐴𝑥𝐴))
98notbid 309 . . . . . . . . . . . . . . 15 (𝑥Q → (¬ (*Q‘(*Q𝑥)) ∈ 𝐴 ↔ ¬ 𝑥𝐴))
109anbi2d 616 . . . . . . . . . . . . . 14 (𝑥Q → ((𝑧 <Q (*Q𝑥) ∧ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴) ↔ (𝑧 <Q (*Q𝑥) ∧ ¬ 𝑥𝐴)))
11 fvex 6417 . . . . . . . . . . . . . . 15 (*Q𝑥) ∈ V
12 breq2 4848 . . . . . . . . . . . . . . . 16 (𝑦 = (*Q𝑥) → (𝑧 <Q 𝑦𝑧 <Q (*Q𝑥)))
13 fveq2 6404 . . . . . . . . . . . . . . . . . 18 (𝑦 = (*Q𝑥) → (*Q𝑦) = (*Q‘(*Q𝑥)))
1413eleq1d 2870 . . . . . . . . . . . . . . . . 17 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ 𝐴 ↔ (*Q‘(*Q𝑥)) ∈ 𝐴))
1514notbid 309 . . . . . . . . . . . . . . . 16 (𝑦 = (*Q𝑥) → (¬ (*Q𝑦) ∈ 𝐴 ↔ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴))
1612, 15anbi12d 618 . . . . . . . . . . . . . . 15 (𝑦 = (*Q𝑥) → ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑧 <Q (*Q𝑥) ∧ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴)))
1711, 16spcev 3493 . . . . . . . . . . . . . 14 ((𝑧 <Q (*Q𝑥) ∧ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
1810, 17syl6bir 245 . . . . . . . . . . . . 13 (𝑥Q → ((𝑧 <Q (*Q𝑥) ∧ ¬ 𝑥𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
19 vex 3394 . . . . . . . . . . . . . 14 𝑧 ∈ V
20 breq1 4847 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥 <Q 𝑦𝑧 <Q 𝑦))
2120anbi1d 617 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
2221exbidv 2012 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
23 reclempr.1 . . . . . . . . . . . . . 14 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
2419, 22, 23elab2 3549 . . . . . . . . . . . . 13 (𝑧𝐵 ↔ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
2518, 24syl6ibr 243 . . . . . . . . . . . 12 (𝑥Q → ((𝑧 <Q (*Q𝑥) ∧ ¬ 𝑥𝐴) → 𝑧𝐵))
2625expcomd 404 . . . . . . . . . . 11 (𝑥Q → (¬ 𝑥𝐴 → (𝑧 <Q (*Q𝑥) → 𝑧𝐵)))
2726imp 395 . . . . . . . . . 10 ((𝑥Q ∧ ¬ 𝑥𝐴) → (𝑧 <Q (*Q𝑥) → 𝑧𝐵))
2827eximdv 2008 . . . . . . . . 9 ((𝑥Q ∧ ¬ 𝑥𝐴) → (∃𝑧 𝑧 <Q (*Q𝑥) → ∃𝑧 𝑧𝐵))
296, 28mpd 15 . . . . . . . 8 ((𝑥Q ∧ ¬ 𝑥𝐴) → ∃𝑧 𝑧𝐵)
30 n0 4132 . . . . . . . 8 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
3129, 30sylibr 225 . . . . . . 7 ((𝑥Q ∧ ¬ 𝑥𝐴) → 𝐵 ≠ ∅)
3231exlimiv 2021 . . . . . 6 (∃𝑥(𝑥Q ∧ ¬ 𝑥𝐴) → 𝐵 ≠ ∅)
331, 2, 323syl 18 . . . . 5 (𝐴P𝐵 ≠ ∅)
34 0pss 4211 . . . . 5 (∅ ⊊ 𝐵𝐵 ≠ ∅)
3533, 34sylibr 225 . . . 4 (𝐴P → ∅ ⊊ 𝐵)
36 prn0 10092 . . . . . . 7 (𝐴P𝐴 ≠ ∅)
37 elprnq 10094 . . . . . . . . . . . . . 14 ((𝐴P𝑧𝐴) → 𝑧Q)
38 recrecnq 10070 . . . . . . . . . . . . . . . 16 (𝑧Q → (*Q‘(*Q𝑧)) = 𝑧)
3938eleq1d 2870 . . . . . . . . . . . . . . 15 (𝑧Q → ((*Q‘(*Q𝑧)) ∈ 𝐴𝑧𝐴))
4039anbi2d 616 . . . . . . . . . . . . . 14 (𝑧Q → ((𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴) ↔ (𝐴P𝑧𝐴)))
4137, 40syl 17 . . . . . . . . . . . . 13 ((𝐴P𝑧𝐴) → ((𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴) ↔ (𝐴P𝑧𝐴)))
42 fvex 6417 . . . . . . . . . . . . . 14 (*Q𝑧) ∈ V
43 fveq2 6404 . . . . . . . . . . . . . . . 16 (𝑥 = (*Q𝑧) → (*Q𝑥) = (*Q‘(*Q𝑧)))
4443eleq1d 2870 . . . . . . . . . . . . . . 15 (𝑥 = (*Q𝑧) → ((*Q𝑥) ∈ 𝐴 ↔ (*Q‘(*Q𝑧)) ∈ 𝐴))
4544anbi2d 616 . . . . . . . . . . . . . 14 (𝑥 = (*Q𝑧) → ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) ↔ (𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴)))
4642, 45spcev 3493 . . . . . . . . . . . . 13 ((𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴) → ∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴))
4741, 46syl6bir 245 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → ((𝐴P𝑧𝐴) → ∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴)))
4847pm2.43i 52 . . . . . . . . . . 11 ((𝐴P𝑧𝐴) → ∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴))
49 elprnq 10094 . . . . . . . . . . . . . 14 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → (*Q𝑥) ∈ Q)
50 dmrecnq 10071 . . . . . . . . . . . . . . 15 dom *Q = Q
51 0nnq 10027 . . . . . . . . . . . . . . 15 ¬ ∅ ∈ Q
5250, 51ndmfvrcl 6435 . . . . . . . . . . . . . 14 ((*Q𝑥) ∈ Q𝑥Q)
5349, 52syl 17 . . . . . . . . . . . . 13 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → 𝑥Q)
54 ltrnq 10082 . . . . . . . . . . . . . . . 16 (𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥))
55 prcdnq 10096 . . . . . . . . . . . . . . . 16 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ((*Q𝑦) <Q (*Q𝑥) → (*Q𝑦) ∈ 𝐴))
5654, 55syl5bi 233 . . . . . . . . . . . . . . 15 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → (𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
5756alrimiv 2018 . . . . . . . . . . . . . 14 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
5823abeq2i 2919 . . . . . . . . . . . . . . . 16 (𝑥𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
59 exanali 1946 . . . . . . . . . . . . . . . 16 (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ¬ ∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
6058, 59bitri 266 . . . . . . . . . . . . . . 15 (𝑥𝐵 ↔ ¬ ∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
6160con2bii 348 . . . . . . . . . . . . . 14 (∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴) ↔ ¬ 𝑥𝐵)
6257, 61sylib 209 . . . . . . . . . . . . 13 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ¬ 𝑥𝐵)
6353, 62jca 503 . . . . . . . . . . . 12 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → (𝑥Q ∧ ¬ 𝑥𝐵))
6463eximi 1919 . . . . . . . . . . 11 (∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵))
6548, 64syl 17 . . . . . . . . . 10 ((𝐴P𝑧𝐴) → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵))
6665ex 399 . . . . . . . . 9 (𝐴P → (𝑧𝐴 → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵)))
6766exlimdv 2024 . . . . . . . 8 (𝐴P → (∃𝑧 𝑧𝐴 → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵)))
68 n0 4132 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
69 nss 3860 . . . . . . . 8 Q𝐵 ↔ ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵))
7067, 68, 693imtr4g 287 . . . . . . 7 (𝐴P → (𝐴 ≠ ∅ → ¬ Q𝐵))
7136, 70mpd 15 . . . . . 6 (𝐴P → ¬ Q𝐵)
72 ltrelnq 10029 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
7372brel 5368 . . . . . . . . . . 11 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
7473simpld 484 . . . . . . . . . 10 (𝑥 <Q 𝑦𝑥Q)
7574adantr 468 . . . . . . . . 9 ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑥Q)
7675exlimiv 2021 . . . . . . . 8 (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑥Q)
7758, 76sylbi 208 . . . . . . 7 (𝑥𝐵𝑥Q)
7877ssriv 3802 . . . . . 6 𝐵Q
7971, 78jctil 511 . . . . 5 (𝐴P → (𝐵Q ∧ ¬ Q𝐵))
80 dfpss3 3891 . . . . 5 (𝐵Q ↔ (𝐵Q ∧ ¬ Q𝐵))
8179, 80sylibr 225 . . . 4 (𝐴P𝐵Q)
8235, 81jca 503 . . 3 (𝐴P → (∅ ⊊ 𝐵𝐵Q))
83 ltsonq 10072 . . . . . . . . . . . 12 <Q Or Q
8483, 72sotri 5734 . . . . . . . . . . 11 ((𝑧 <Q 𝑥𝑥 <Q 𝑦) → 𝑧 <Q 𝑦)
8584ex 399 . . . . . . . . . 10 (𝑧 <Q 𝑥 → (𝑥 <Q 𝑦𝑧 <Q 𝑦))
8685anim1d 600 . . . . . . . . 9 (𝑧 <Q 𝑥 → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
8786eximdv 2008 . . . . . . . 8 (𝑧 <Q 𝑥 → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
8887, 58, 243imtr4g 287 . . . . . . 7 (𝑧 <Q 𝑥 → (𝑥𝐵𝑧𝐵))
8988com12 32 . . . . . 6 (𝑥𝐵 → (𝑧 <Q 𝑥𝑧𝐵))
9089alrimiv 2018 . . . . 5 (𝑥𝐵 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐵))
91 nfe1 2194 . . . . . . . . . 10 𝑦𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)
9291nfab 2953 . . . . . . . . 9 𝑦{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
9323, 92nfcxfr 2946 . . . . . . . 8 𝑦𝐵
94 nfv 2005 . . . . . . . 8 𝑦 𝑥 <Q 𝑧
9593, 94nfrex 3194 . . . . . . 7 𝑦𝑧𝐵 𝑥 <Q 𝑧
96 19.8a 2217 . . . . . . . . . . . . . 14 ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
9796, 24sylibr 225 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑧𝐵)
9897adantll 696 . . . . . . . . . . . 12 (((𝑥 <Q 𝑧𝑧 <Q 𝑦) ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑧𝐵)
99 simpll 774 . . . . . . . . . . . 12 (((𝑥 <Q 𝑧𝑧 <Q 𝑦) ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑥 <Q 𝑧)
10098, 99jca 503 . . . . . . . . . . 11 (((𝑥 <Q 𝑧𝑧 <Q 𝑦) ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧𝐵𝑥 <Q 𝑧))
101100expcom 400 . . . . . . . . . 10 (¬ (*Q𝑦) ∈ 𝐴 → ((𝑥 <Q 𝑧𝑧 <Q 𝑦) → (𝑧𝐵𝑥 <Q 𝑧)))
102101eximdv 2008 . . . . . . . . 9 (¬ (*Q𝑦) ∈ 𝐴 → (∃𝑧(𝑥 <Q 𝑧𝑧 <Q 𝑦) → ∃𝑧(𝑧𝐵𝑥 <Q 𝑧)))
103 ltbtwnnq 10081 . . . . . . . . 9 (𝑥 <Q 𝑦 ↔ ∃𝑧(𝑥 <Q 𝑧𝑧 <Q 𝑦))
104 df-rex 3102 . . . . . . . . 9 (∃𝑧𝐵 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧𝐵𝑥 <Q 𝑧))
105102, 103, 1043imtr4g 287 . . . . . . . 8 (¬ (*Q𝑦) ∈ 𝐴 → (𝑥 <Q 𝑦 → ∃𝑧𝐵 𝑥 <Q 𝑧))
106105impcom 396 . . . . . . 7 ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑧𝐵 𝑥 <Q 𝑧)
10795, 106exlimi 2253 . . . . . 6 (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑧𝐵 𝑥 <Q 𝑧)
10858, 107sylbi 208 . . . . 5 (𝑥𝐵 → ∃𝑧𝐵 𝑥 <Q 𝑧)
10990, 108jca 503 . . . 4 (𝑥𝐵 → (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧))
110109rgen 3110 . . 3 𝑥𝐵 (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧)
11182, 110jctir 512 . 2 (𝐴P → ((∅ ⊊ 𝐵𝐵Q) ∧ ∀𝑥𝐵 (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧)))
112 elnp 10090 . 2 (𝐵P ↔ ((∅ ⊊ 𝐵𝐵Q) ∧ ∀𝑥𝐵 (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧)))
113111, 112sylibr 225 1 (𝐴P𝐵P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wex 1859  wcel 2156  {cab 2792  wne 2978  wral 3096  wrex 3097  wss 3769  wpss 3770  c0 4116   class class class wbr 4844  cfv 6097  Qcnq 9955  *Qcrq 9960   <Q cltq 9961  Pcnp 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-omul 7797  df-er 7975  df-ni 9975  df-pli 9976  df-mi 9977  df-lti 9978  df-plpq 10011  df-mpq 10012  df-ltpq 10013  df-enq 10014  df-nq 10015  df-erq 10016  df-plq 10017  df-mq 10018  df-1nq 10019  df-rq 10020  df-ltnq 10021  df-np 10084
This theorem is referenced by:  reclem3pr  10152  reclem4pr  10153  recexpr  10154
  Copyright terms: Public domain W3C validator