MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem2pr Structured version   Visualization version   GIF version

Theorem reclem2pr 11086
Description: Lemma for Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem2pr (𝐴P𝐵P)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem2pr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prpssnq 11028 . . . . 5 (𝐴P𝐴Q)
2 pssnel 4477 . . . . 5 (𝐴Q → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐴))
3 recclnq 11004 . . . . . . . . . 10 (𝑥Q → (*Q𝑥) ∈ Q)
4 nsmallnq 11015 . . . . . . . . . 10 ((*Q𝑥) ∈ Q → ∃𝑧 𝑧 <Q (*Q𝑥))
53, 4syl 17 . . . . . . . . 9 (𝑥Q → ∃𝑧 𝑧 <Q (*Q𝑥))
65adantr 480 . . . . . . . 8 ((𝑥Q ∧ ¬ 𝑥𝐴) → ∃𝑧 𝑧 <Q (*Q𝑥))
7 recrecnq 11005 . . . . . . . . . . . . . . . 16 (𝑥Q → (*Q‘(*Q𝑥)) = 𝑥)
87eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑥Q → ((*Q‘(*Q𝑥)) ∈ 𝐴𝑥𝐴))
98notbid 318 . . . . . . . . . . . . . 14 (𝑥Q → (¬ (*Q‘(*Q𝑥)) ∈ 𝐴 ↔ ¬ 𝑥𝐴))
109anbi2d 630 . . . . . . . . . . . . 13 (𝑥Q → ((𝑧 <Q (*Q𝑥) ∧ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴) ↔ (𝑧 <Q (*Q𝑥) ∧ ¬ 𝑥𝐴)))
11 fvex 6920 . . . . . . . . . . . . . 14 (*Q𝑥) ∈ V
12 breq2 5152 . . . . . . . . . . . . . . 15 (𝑦 = (*Q𝑥) → (𝑧 <Q 𝑦𝑧 <Q (*Q𝑥)))
13 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑦 = (*Q𝑥) → (*Q𝑦) = (*Q‘(*Q𝑥)))
1413eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑦 = (*Q𝑥) → ((*Q𝑦) ∈ 𝐴 ↔ (*Q‘(*Q𝑥)) ∈ 𝐴))
1514notbid 318 . . . . . . . . . . . . . . 15 (𝑦 = (*Q𝑥) → (¬ (*Q𝑦) ∈ 𝐴 ↔ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴))
1612, 15anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = (*Q𝑥) → ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑧 <Q (*Q𝑥) ∧ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴)))
1711, 16spcev 3606 . . . . . . . . . . . . 13 ((𝑧 <Q (*Q𝑥) ∧ ¬ (*Q‘(*Q𝑥)) ∈ 𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
1810, 17biimtrrdi 254 . . . . . . . . . . . 12 (𝑥Q → ((𝑧 <Q (*Q𝑥) ∧ ¬ 𝑥𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
19 vex 3482 . . . . . . . . . . . . 13 𝑧 ∈ V
20 breq1 5151 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥 <Q 𝑦𝑧 <Q 𝑦))
2120anbi1d 631 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
2221exbidv 1919 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
23 reclempr.1 . . . . . . . . . . . . 13 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
2419, 22, 23elab2 3685 . . . . . . . . . . . 12 (𝑧𝐵 ↔ ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
2518, 24imbitrrdi 252 . . . . . . . . . . 11 (𝑥Q → ((𝑧 <Q (*Q𝑥) ∧ ¬ 𝑥𝐴) → 𝑧𝐵))
2625expcomd 416 . . . . . . . . . 10 (𝑥Q → (¬ 𝑥𝐴 → (𝑧 <Q (*Q𝑥) → 𝑧𝐵)))
2726imp 406 . . . . . . . . 9 ((𝑥Q ∧ ¬ 𝑥𝐴) → (𝑧 <Q (*Q𝑥) → 𝑧𝐵))
2827eximdv 1915 . . . . . . . 8 ((𝑥Q ∧ ¬ 𝑥𝐴) → (∃𝑧 𝑧 <Q (*Q𝑥) → ∃𝑧 𝑧𝐵))
296, 28mpd 15 . . . . . . 7 ((𝑥Q ∧ ¬ 𝑥𝐴) → ∃𝑧 𝑧𝐵)
30 n0 4359 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
3129, 30sylibr 234 . . . . . 6 ((𝑥Q ∧ ¬ 𝑥𝐴) → 𝐵 ≠ ∅)
3231exlimiv 1928 . . . . 5 (∃𝑥(𝑥Q ∧ ¬ 𝑥𝐴) → 𝐵 ≠ ∅)
331, 2, 323syl 18 . . . 4 (𝐴P𝐵 ≠ ∅)
34 0pss 4453 . . . 4 (∅ ⊊ 𝐵𝐵 ≠ ∅)
3533, 34sylibr 234 . . 3 (𝐴P → ∅ ⊊ 𝐵)
36 prn0 11027 . . . . . 6 (𝐴P𝐴 ≠ ∅)
37 elprnq 11029 . . . . . . . . . . . . 13 ((𝐴P𝑧𝐴) → 𝑧Q)
38 recrecnq 11005 . . . . . . . . . . . . . . 15 (𝑧Q → (*Q‘(*Q𝑧)) = 𝑧)
3938eleq1d 2824 . . . . . . . . . . . . . 14 (𝑧Q → ((*Q‘(*Q𝑧)) ∈ 𝐴𝑧𝐴))
4039anbi2d 630 . . . . . . . . . . . . 13 (𝑧Q → ((𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴) ↔ (𝐴P𝑧𝐴)))
4137, 40syl 17 . . . . . . . . . . . 12 ((𝐴P𝑧𝐴) → ((𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴) ↔ (𝐴P𝑧𝐴)))
42 fvex 6920 . . . . . . . . . . . . 13 (*Q𝑧) ∈ V
43 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑥 = (*Q𝑧) → (*Q𝑥) = (*Q‘(*Q𝑧)))
4443eleq1d 2824 . . . . . . . . . . . . . 14 (𝑥 = (*Q𝑧) → ((*Q𝑥) ∈ 𝐴 ↔ (*Q‘(*Q𝑧)) ∈ 𝐴))
4544anbi2d 630 . . . . . . . . . . . . 13 (𝑥 = (*Q𝑧) → ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) ↔ (𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴)))
4642, 45spcev 3606 . . . . . . . . . . . 12 ((𝐴P ∧ (*Q‘(*Q𝑧)) ∈ 𝐴) → ∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴))
4741, 46biimtrrdi 254 . . . . . . . . . . 11 ((𝐴P𝑧𝐴) → ((𝐴P𝑧𝐴) → ∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴)))
4847pm2.43i 52 . . . . . . . . . 10 ((𝐴P𝑧𝐴) → ∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴))
49 elprnq 11029 . . . . . . . . . . . . 13 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → (*Q𝑥) ∈ Q)
50 dmrecnq 11006 . . . . . . . . . . . . . 14 dom *Q = Q
51 0nnq 10962 . . . . . . . . . . . . . 14 ¬ ∅ ∈ Q
5250, 51ndmfvrcl 6943 . . . . . . . . . . . . 13 ((*Q𝑥) ∈ Q𝑥Q)
5349, 52syl 17 . . . . . . . . . . . 12 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → 𝑥Q)
54 ltrnq 11017 . . . . . . . . . . . . . . 15 (𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥))
55 prcdnq 11031 . . . . . . . . . . . . . . 15 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ((*Q𝑦) <Q (*Q𝑥) → (*Q𝑦) ∈ 𝐴))
5654, 55biimtrid 242 . . . . . . . . . . . . . 14 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → (𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
5756alrimiv 1925 . . . . . . . . . . . . 13 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
5823eqabri 2883 . . . . . . . . . . . . . . 15 (𝑥𝐵 ↔ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
59 exanali 1857 . . . . . . . . . . . . . . 15 (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ¬ ∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
6058, 59bitri 275 . . . . . . . . . . . . . 14 (𝑥𝐵 ↔ ¬ ∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴))
6160con2bii 357 . . . . . . . . . . . . 13 (∀𝑦(𝑥 <Q 𝑦 → (*Q𝑦) ∈ 𝐴) ↔ ¬ 𝑥𝐵)
6257, 61sylib 218 . . . . . . . . . . . 12 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ¬ 𝑥𝐵)
6353, 62jca 511 . . . . . . . . . . 11 ((𝐴P ∧ (*Q𝑥) ∈ 𝐴) → (𝑥Q ∧ ¬ 𝑥𝐵))
6463eximi 1832 . . . . . . . . . 10 (∃𝑥(𝐴P ∧ (*Q𝑥) ∈ 𝐴) → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵))
6548, 64syl 17 . . . . . . . . 9 ((𝐴P𝑧𝐴) → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵))
6665ex 412 . . . . . . . 8 (𝐴P → (𝑧𝐴 → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵)))
6766exlimdv 1931 . . . . . . 7 (𝐴P → (∃𝑧 𝑧𝐴 → ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵)))
68 n0 4359 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
69 nss 4060 . . . . . . 7 Q𝐵 ↔ ∃𝑥(𝑥Q ∧ ¬ 𝑥𝐵))
7067, 68, 693imtr4g 296 . . . . . 6 (𝐴P → (𝐴 ≠ ∅ → ¬ Q𝐵))
7136, 70mpd 15 . . . . 5 (𝐴P → ¬ Q𝐵)
72 ltrelnq 10964 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
7372brel 5754 . . . . . . . . . 10 (𝑥 <Q 𝑦 → (𝑥Q𝑦Q))
7473simpld 494 . . . . . . . . 9 (𝑥 <Q 𝑦𝑥Q)
7574adantr 480 . . . . . . . 8 ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑥Q)
7675exlimiv 1928 . . . . . . 7 (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑥Q)
7758, 76sylbi 217 . . . . . 6 (𝑥𝐵𝑥Q)
7877ssriv 3999 . . . . 5 𝐵Q
7971, 78jctil 519 . . . 4 (𝐴P → (𝐵Q ∧ ¬ Q𝐵))
80 dfpss3 4099 . . . 4 (𝐵Q ↔ (𝐵Q ∧ ¬ Q𝐵))
8179, 80sylibr 234 . . 3 (𝐴P𝐵Q)
8235, 81jca 511 . 2 (𝐴P → (∅ ⊊ 𝐵𝐵Q))
83 ltsonq 11007 . . . . . . . . . . 11 <Q Or Q
8483, 72sotri 6150 . . . . . . . . . 10 ((𝑧 <Q 𝑥𝑥 <Q 𝑦) → 𝑧 <Q 𝑦)
8584ex 412 . . . . . . . . 9 (𝑧 <Q 𝑥 → (𝑥 <Q 𝑦𝑧 <Q 𝑦))
8685anim1d 611 . . . . . . . 8 (𝑧 <Q 𝑥 → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
8786eximdv 1915 . . . . . . 7 (𝑧 <Q 𝑥 → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
8887, 58, 243imtr4g 296 . . . . . 6 (𝑧 <Q 𝑥 → (𝑥𝐵𝑧𝐵))
8988com12 32 . . . . 5 (𝑥𝐵 → (𝑧 <Q 𝑥𝑧𝐵))
9089alrimiv 1925 . . . 4 (𝑥𝐵 → ∀𝑧(𝑧 <Q 𝑥𝑧𝐵))
91 nfe1 2148 . . . . . . . . 9 𝑦𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)
9291nfab 2909 . . . . . . . 8 𝑦{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
9323, 92nfcxfr 2901 . . . . . . 7 𝑦𝐵
94 nfv 1912 . . . . . . 7 𝑦 𝑥 <Q 𝑧
9593, 94nfrexw 3311 . . . . . 6 𝑦𝑧𝐵 𝑥 <Q 𝑧
96 19.8a 2179 . . . . . . . . . . . . 13 ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑦(𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
9796, 24sylibr 234 . . . . . . . . . . . 12 ((𝑧 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑧𝐵)
9897adantll 714 . . . . . . . . . . 11 (((𝑥 <Q 𝑧𝑧 <Q 𝑦) ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑧𝐵)
99 simpll 767 . . . . . . . . . . 11 (((𝑥 <Q 𝑧𝑧 <Q 𝑦) ∧ ¬ (*Q𝑦) ∈ 𝐴) → 𝑥 <Q 𝑧)
10098, 99jca 511 . . . . . . . . . 10 (((𝑥 <Q 𝑧𝑧 <Q 𝑦) ∧ ¬ (*Q𝑦) ∈ 𝐴) → (𝑧𝐵𝑥 <Q 𝑧))
101100expcom 413 . . . . . . . . 9 (¬ (*Q𝑦) ∈ 𝐴 → ((𝑥 <Q 𝑧𝑧 <Q 𝑦) → (𝑧𝐵𝑥 <Q 𝑧)))
102101eximdv 1915 . . . . . . . 8 (¬ (*Q𝑦) ∈ 𝐴 → (∃𝑧(𝑥 <Q 𝑧𝑧 <Q 𝑦) → ∃𝑧(𝑧𝐵𝑥 <Q 𝑧)))
103 ltbtwnnq 11016 . . . . . . . 8 (𝑥 <Q 𝑦 ↔ ∃𝑧(𝑥 <Q 𝑧𝑧 <Q 𝑦))
104 df-rex 3069 . . . . . . . 8 (∃𝑧𝐵 𝑥 <Q 𝑧 ↔ ∃𝑧(𝑧𝐵𝑥 <Q 𝑧))
105102, 103, 1043imtr4g 296 . . . . . . 7 (¬ (*Q𝑦) ∈ 𝐴 → (𝑥 <Q 𝑦 → ∃𝑧𝐵 𝑥 <Q 𝑧))
106105impcom 407 . . . . . 6 ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑧𝐵 𝑥 <Q 𝑧)
10795, 106exlimi 2215 . . . . 5 (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) → ∃𝑧𝐵 𝑥 <Q 𝑧)
10858, 107sylbi 217 . . . 4 (𝑥𝐵 → ∃𝑧𝐵 𝑥 <Q 𝑧)
10990, 108jca 511 . . 3 (𝑥𝐵 → (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧))
110109rgen 3061 . 2 𝑥𝐵 (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧)
111 elnp 11025 . 2 (𝐵P ↔ ((∅ ⊊ 𝐵𝐵Q) ∧ ∀𝑥𝐵 (∀𝑧(𝑧 <Q 𝑥𝑧𝐵) ∧ ∃𝑧𝐵 𝑥 <Q 𝑧)))
11282, 110, 111sylanblrc 590 1 (𝐴P𝐵P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  wss 3963  wpss 3964  c0 4339   class class class wbr 5148  cfv 6563  Qcnq 10890  *Qcrq 10895   <Q cltq 10896  Pcnp 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019
This theorem is referenced by:  reclem3pr  11087  reclem4pr  11088  recexpr  11089
  Copyright terms: Public domain W3C validator