MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnpi Structured version   Visualization version   GIF version

Theorem elnpi 10399
Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnpi (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elnpi
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴P𝐴 ∈ V)
2 simpl1 1188 . 2 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V)
3 psseq2 4016 . . . . . 6 (𝑧 = 𝑤 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝑤))
4 psseq1 4015 . . . . . 6 (𝑧 = 𝑤 → (𝑧Q𝑤Q))
53, 4anbi12d 633 . . . . 5 (𝑧 = 𝑤 → ((∅ ⊊ 𝑧𝑧Q) ↔ (∅ ⊊ 𝑤𝑤Q)))
6 elequ2 2126 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑦𝑧𝑦𝑤))
76imbi2d 344 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑦 <Q 𝑥𝑦𝑧) ↔ (𝑦 <Q 𝑥𝑦𝑤)))
87albidv 1921 . . . . . . 7 (𝑧 = 𝑤 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝑤)))
9 rexeq 3359 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦𝑤 𝑥 <Q 𝑦))
108, 9anbi12d 633 . . . . . 6 (𝑧 = 𝑤 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ∧ ∃𝑦𝑤 𝑥 <Q 𝑦)))
1110raleqbi1dv 3356 . . . . 5 (𝑧 = 𝑤 → (∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥𝑤 (∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ∧ ∃𝑦𝑤 𝑥 <Q 𝑦)))
125, 11anbi12d 633 . . . 4 (𝑧 = 𝑤 → (((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝑤𝑤Q) ∧ ∀𝑥𝑤 (∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ∧ ∃𝑦𝑤 𝑥 <Q 𝑦))))
13 psseq2 4016 . . . . . 6 (𝑤 = 𝐴 → (∅ ⊊ 𝑤 ↔ ∅ ⊊ 𝐴))
14 psseq1 4015 . . . . . 6 (𝑤 = 𝐴 → (𝑤Q𝐴Q))
1513, 14anbi12d 633 . . . . 5 (𝑤 = 𝐴 → ((∅ ⊊ 𝑤𝑤Q) ↔ (∅ ⊊ 𝐴𝐴Q)))
16 eleq2 2878 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑦𝑤𝑦𝐴))
1716imbi2d 344 . . . . . . . 8 (𝑤 = 𝐴 → ((𝑦 <Q 𝑥𝑦𝑤) ↔ (𝑦 <Q 𝑥𝑦𝐴)))
1817albidv 1921 . . . . . . 7 (𝑤 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝐴)))
19 rexeq 3359 . . . . . . 7 (𝑤 = 𝐴 → (∃𝑦𝑤 𝑥 <Q 𝑦 ↔ ∃𝑦𝐴 𝑥 <Q 𝑦))
2018, 19anbi12d 633 . . . . . 6 (𝑤 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ∧ ∃𝑦𝑤 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2120raleqbi1dv 3356 . . . . 5 (𝑤 = 𝐴 → (∀𝑥𝑤 (∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ∧ ∃𝑦𝑤 𝑥 <Q 𝑦) ↔ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
2215, 21anbi12d 633 . . . 4 (𝑤 = 𝐴 → (((∅ ⊊ 𝑤𝑤Q) ∧ ∀𝑥𝑤 (∀𝑦(𝑦 <Q 𝑥𝑦𝑤) ∧ ∃𝑦𝑤 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
23 df-np 10392 . . . 4 P = {𝑧 ∣ ((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦))}
2412, 22, 23elab2gw 3613 . . 3 (𝐴 ∈ V → (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
25 id 22 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q))
26253expib 1119 . . . . 5 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
27 3simpc 1147 . . . . 5 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (∅ ⊊ 𝐴𝐴Q))
2826, 27impbid1 228 . . . 4 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) ↔ (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
2928anbi1d 632 . . 3 (𝐴 ∈ V → (((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
3024, 29bitrd 282 . 2 (𝐴 ∈ V → (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
311, 2, 30pm5.21nii 383 1 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wpss 3882  c0 4243   class class class wbr 5030  Qcnq 10263   <Q cltq 10269  Pcnp 10270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-in 3888  df-ss 3898  df-pss 3900  df-np 10392
This theorem is referenced by:  prn0  10400  prpssnq  10401  prcdnq  10404  prnmax  10406
  Copyright terms: Public domain W3C validator