MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnpi Structured version   Visualization version   GIF version

Theorem elnpi 10675
Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnpi (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝐴P𝐴 ∈ V)
2 simpl1 1189 . 2 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V)
3 psseq2 4019 . . . . . 6 (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴))
4 psseq1 4018 . . . . . 6 (𝑧 = 𝐴 → (𝑧Q𝐴Q))
53, 4anbi12d 630 . . . . 5 (𝑧 = 𝐴 → ((∅ ⊊ 𝑧𝑧Q) ↔ (∅ ⊊ 𝐴𝐴Q)))
6 eleq2 2827 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
76imbi2d 340 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑦 <Q 𝑥𝑦𝑧) ↔ (𝑦 <Q 𝑥𝑦𝐴)))
87albidv 1924 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝐴)))
9 rexeq 3334 . . . . . . 7 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦𝐴 𝑥 <Q 𝑦))
108, 9anbi12d 630 . . . . . 6 (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1110raleqbi1dv 3331 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
125, 11anbi12d 630 . . . 4 (𝑧 = 𝐴 → (((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
13 df-np 10668 . . . 4 P = {𝑧 ∣ ((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦))}
1412, 13elab2g 3604 . . 3 (𝐴 ∈ V → (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
15 id 22 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q))
16153expib 1120 . . . . 5 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
17 3simpc 1148 . . . . 5 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (∅ ⊊ 𝐴𝐴Q))
1816, 17impbid1 224 . . . 4 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) ↔ (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
1918anbi1d 629 . . 3 (𝐴 ∈ V → (((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
2014, 19bitrd 278 . 2 (𝐴 ∈ V → (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
211, 2, 20pm5.21nii 379 1 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wpss 3884  c0 4253   class class class wbr 5070  Qcnq 10539   <Q cltq 10545  Pcnp 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-pss 3902  df-np 10668
This theorem is referenced by:  prn0  10676  prpssnq  10677  prcdnq  10680  prnmax  10682
  Copyright terms: Public domain W3C validator