MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdvsca Structured version   Visualization version   GIF version

Theorem psdvsca 22095
Description: The derivative of a scaled power series is the scaled derivative. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psdvsca.b 𝐵 = (Base‘𝑆)
psdvsca.m · = ( ·𝑠𝑆)
psdvsca.k 𝐾 = (Base‘𝑅)
psdvsca.i (𝜑𝐼𝑉)
psdvsca.r (𝜑𝑅 ∈ CRing)
psdvsca.x (𝜑𝑋𝐼)
psdvsca.f (𝜑𝐹𝐵)
psdvsca.c (𝜑𝐶𝐾)
Assertion
Ref Expression
psdvsca (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) = (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))

Proof of Theorem psdvsca
Dummy variables 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2728 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2728 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdvsca.b . . . 4 𝐵 = (Base‘𝑆)
5 psdvsca.i . . . . 5 (𝜑𝐼𝑉)
6 psdvsca.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
76crngringd 20193 . . . . . 6 (𝜑𝑅 ∈ Ring)
8 ringmgm 20191 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mgm)
97, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Mgm)
10 psdvsca.x . . . . 5 (𝜑𝑋𝐼)
11 psdvsca.m . . . . . 6 · = ( ·𝑠𝑆)
12 psdvsca.k . . . . . 6 𝐾 = (Base‘𝑅)
13 psdvsca.c . . . . . 6 (𝜑𝐶𝐾)
14 psdvsca.f . . . . . 6 (𝜑𝐹𝐵)
151, 11, 12, 4, 7, 13, 14psrvscacl 21901 . . . . 5 (𝜑 → (𝐶 · 𝐹) ∈ 𝐵)
161, 4, 5, 9, 10, 15psdcl 22092 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) ∈ 𝐵)
171, 2, 3, 4, 16psrelbas 21886 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1817ffnd 6728 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
191, 4, 5, 9, 10, 14psdcl 22092 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
201, 11, 12, 4, 7, 13, 19psrvscacl 21901 . . . 4 (𝜑 → (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ∈ 𝐵)
211, 2, 3, 4, 20psrelbas 21886 . . 3 (𝜑 → (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2221ffnd 6728 . 2 (𝜑 → (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
237adantr 479 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
243psrbagf 21858 . . . . . . . 8 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2524adantl 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
2610adantr 479 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
2725, 26ffvelcdmd 7100 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
28 peano2nn0 12550 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
2928nn0zd 12622 . . . . . 6 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℤ)
3027, 29syl 17 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℤ)
3113adantr 479 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
321, 12, 3, 4, 14psrelbas 21886 . . . . . . 7 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
3332adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
34 simpr 483 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
353psrbagsn 22014 . . . . . . . . 9 (𝐼𝑉 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
365, 35syl 17 . . . . . . . 8 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3736adantr 479 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
383psrbagaddcl 21868 . . . . . . 7 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3934, 37, 38syl2anc 582 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4033, 39ffvelcdmd 7100 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ 𝐾)
41 eqid 2728 . . . . . 6 (.g𝑅) = (.g𝑅)
42 eqid 2728 . . . . . 6 (.r𝑅) = (.r𝑅)
4312, 41, 42mulgass3 20299 . . . . 5 ((𝑅 ∈ Ring ∧ (((𝑑𝑋) + 1) ∈ ℤ ∧ 𝐶𝐾 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ 𝐾)) → (𝐶(.r𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
4423, 30, 31, 40, 43syl13anc 1369 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐶(.r𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
455adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
466adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
4714adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
481, 4, 3, 45, 46, 26, 47, 34psdcoef 22091 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
4948oveq2d 7442 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐶(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑)) = (𝐶(.r𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
501, 11, 12, 4, 42, 3, 31, 47, 39psrvscaval 21900 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5150oveq2d 7442 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
5244, 49, 513eqtr4rd 2779 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐶(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑)))
5315adantr 479 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐶 · 𝐹) ∈ 𝐵)
541, 4, 3, 45, 46, 26, 53, 34psdcoef 22091 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5519adantr 479 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
561, 11, 12, 4, 42, 3, 31, 55, 34psrvscaval 21900 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))‘𝑑) = (𝐶(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑)))
5752, 54, 563eqtr4d 2778 . 2 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹))‘𝑑) = ((𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))‘𝑑))
5818, 22, 57eqfnfvd 7048 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) = (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3430  ifcif 4532  cmpt 5235  ccnv 5681  cima 5685  wf 6549  cfv 6553  (class class class)co 7426  f cof 7689  m cmap 8851  Fincfn 8970  0cc0 11146  1c1 11147   + caddc 11149  cn 12250  0cn0 12510  cz 12596  Basecbs 17187  .rcmulr 17241   ·𝑠 cvsca 17244  Mgmcmgm 18605  .gcmg 19030  Ringcrg 20180  CRingccrg 20181   mPwSer cmps 21844   mPSDer cpsd 22063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-seq 14007  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-tset 17259  df-0g 17430  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-mulg 19031  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20280  df-psr 21849  df-psd 22087
This theorem is referenced by:  psdascl  22099
  Copyright terms: Public domain W3C validator