MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdvsca Structured version   Visualization version   GIF version

Theorem psdvsca 22058
Description: The derivative of a scaled power series is the scaled derivative. (Contributed by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psdvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psdvsca.b 𝐵 = (Base‘𝑆)
psdvsca.m · = ( ·𝑠𝑆)
psdvsca.k 𝐾 = (Base‘𝑅)
psdvsca.r (𝜑𝑅 ∈ CRing)
psdvsca.x (𝜑𝑋𝐼)
psdvsca.f (𝜑𝐹𝐵)
psdvsca.c (𝜑𝐶𝐾)
Assertion
Ref Expression
psdvsca (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) = (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))

Proof of Theorem psdvsca
Dummy variables 𝑑 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2730 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdvsca.b . . . 4 𝐵 = (Base‘𝑆)
5 psdvsca.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
65crngringd 20162 . . . . . 6 (𝜑𝑅 ∈ Ring)
7 ringmgm 20160 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mgm)
86, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Mgm)
9 psdvsca.x . . . . 5 (𝜑𝑋𝐼)
10 psdvsca.m . . . . . 6 · = ( ·𝑠𝑆)
11 psdvsca.k . . . . . 6 𝐾 = (Base‘𝑅)
12 psdvsca.c . . . . . 6 (𝜑𝐶𝐾)
13 psdvsca.f . . . . . 6 (𝜑𝐹𝐵)
141, 10, 11, 4, 6, 12, 13psrvscacl 21867 . . . . 5 (𝜑 → (𝐶 · 𝐹) ∈ 𝐵)
151, 4, 8, 9, 14psdcl 22055 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) ∈ 𝐵)
161, 2, 3, 4, 15psrelbas 21850 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1716ffnd 6692 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
181, 4, 8, 9, 13psdcl 22055 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
191, 10, 11, 4, 6, 12, 18psrvscacl 21867 . . . 4 (𝜑 → (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ∈ 𝐵)
201, 2, 3, 4, 19psrelbas 21850 . . 3 (𝜑 → (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2120ffnd 6692 . 2 (𝜑 → (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
226adantr 480 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
233psrbagf 21834 . . . . . . . 8 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2423adantl 481 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
259adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
2624, 25ffvelcdmd 7060 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
27 peano2nn0 12489 . . . . . . 7 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
2827nn0zd 12562 . . . . . 6 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℤ)
2926, 28syl 17 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℤ)
3012adantr 480 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐶𝐾)
311, 11, 3, 4, 13psrelbas 21850 . . . . . . 7 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
3231adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
33 simpr 484 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
34 reldmpsr 21830 . . . . . . . . . . 11 Rel dom mPwSer
351, 4, 34strov2rcl 17194 . . . . . . . . . 10 (𝐹𝐵𝐼 ∈ V)
3613, 35syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ V)
373psrbagsn 21977 . . . . . . . . 9 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3836, 37syl 17 . . . . . . . 8 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3938adantr 480 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
403psrbagaddcl 21840 . . . . . . 7 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4133, 39, 40syl2anc 584 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4232, 41ffvelcdmd 7060 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ 𝐾)
43 eqid 2730 . . . . . 6 (.g𝑅) = (.g𝑅)
44 eqid 2730 . . . . . 6 (.r𝑅) = (.r𝑅)
4511, 43, 44mulgass3 20269 . . . . 5 ((𝑅 ∈ Ring ∧ (((𝑑𝑋) + 1) ∈ ℤ ∧ 𝐶𝐾 ∧ (𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) ∈ 𝐾)) → (𝐶(.r𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
4622, 29, 30, 42, 45syl13anc 1374 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐶(.r𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
4713adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
481, 4, 3, 25, 47, 33psdcoef 22054 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
4948oveq2d 7406 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐶(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑)) = (𝐶(.r𝑅)(((𝑑𝑋) + 1)(.g𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
501, 10, 11, 4, 44, 3, 30, 47, 41psrvscaval 21866 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5150oveq2d 7406 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝐶(.r𝑅)(𝐹‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
5246, 49, 513eqtr4rd 2776 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐶(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑)))
5314adantr 480 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐶 · 𝐹) ∈ 𝐵)
541, 4, 3, 25, 53, 33psdcoef 22054 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹))‘𝑑) = (((𝑑𝑋) + 1)(.g𝑅)((𝐶 · 𝐹)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
5518adantr 480 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
561, 10, 11, 4, 44, 3, 30, 55, 33psrvscaval 21866 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))‘𝑑) = (𝐶(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑑)))
5752, 54, 563eqtr4d 2775 . 2 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹))‘𝑑) = ((𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))‘𝑑))
5817, 21, 57eqfnfvd 7009 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐶 · 𝐹)) = (𝐶 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  ifcif 4491  cmpt 5191  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  0cn0 12449  cz 12536  Basecbs 17186  .rcmulr 17228   ·𝑠 cvsca 17231  Mgmcmgm 18572  .gcmg 19006  Ringcrg 20149  CRingccrg 20150   mPwSer cmps 21820   mPSDer cpsd 22024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-psr 21825  df-psd 22050
This theorem is referenced by:  psdascl  22062
  Copyright terms: Public domain W3C validator