Home | Metamath
Proof Explorer Theorem List (p. 221 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmat0 22001* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐼𝑀𝐼))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmatgsumbin 22002* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ (((♯‘𝑁)C𝑙)𝐹((((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽))) · (𝑙 ↑ 𝑋)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpscmatgsummon 22003* | The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of scaled monomials. (Contributed by AV, 2-Sep-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ − = (-g‘𝑃) & ⊢ 𝐹 = (.g‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑍 = (.g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐽 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐽𝑀𝐽))) → (𝐶‘𝑀) = (𝑃 Σg (𝑙 ∈ (0...(♯‘𝑁)) ↦ ((((♯‘𝑁)C𝑙)𝑍(((♯‘𝑁) − 𝑙)𝐸(𝐼‘(𝐽𝑀𝐽)))) · (𝑙 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chp0mat 22004 | The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 0 = (0g‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = ((♯‘𝑁) ↑ 𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chpidmat 22005 | The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐼 = (1r‘𝐴) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ − = (-g‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chmaidscmat 22006 | The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019.) (Revised by AV, 5-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝐾 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑆 = (𝑁 ScMat 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐶‘𝑀) · 1 ) ∈ 𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this subsection the function 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) is discussed. This function is involved in the representation of the product of the characteristic matrix of a given matrix and its adjunct as an infinite sum, see cpmadugsum 22036. Therefore, this function is called "characteristic factor function" (in short "chfacf") in the following. It plays an important role in the proof of the Cayley-Hamilton theorem, see cayhamlem1 22024, cayhamlem3 22045 and cayhamlem4 22046. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04if 22007* | The function values of a mapping from the nonnegative integers with four distinct cases. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐴) & ⊢ ((𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐵) & ⊢ ((𝜑 ∧ 𝑁 = 𝑆) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐶) & ⊢ ((𝜑 ∧ 𝑆 < 𝑁) → 𝑌 = ⦋𝑁 / 𝑛⦌𝐷) ⇒ ⊢ (𝜑 → (𝐺‘𝑁) = 𝑌) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifa 22008* | The function value of a mapping from the nonnegative integers with four distinct cases for the first case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 0 ∧ ⦋𝑁 / 𝑛⦌𝐴 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐴) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifb 22009* | The function value of a mapping from the nonnegative integers with four distinct cases for the second case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ (0 < 𝑁 ∧ 𝑁 < 𝑆) ∧ ⦋𝑁 / 𝑛⦌𝐵 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifc 22010* | The function value of a mapping from the nonnegative integers with four distinct cases for the third case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑁 = 𝑆 ∧ ⦋𝑁 / 𝑛⦌𝐶 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐶) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fvmptnn04ifd 22011* | The function value of a mapping from the nonnegative integers with four distinct cases for the forth case. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 𝐴, if(𝑛 = 𝑆, 𝐶, if(𝑆 < 𝑛, 𝐷, 𝐵)))) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑆 < 𝑁 ∧ ⦋𝑁 / 𝑛⦌𝐷 ∈ 𝑉) → (𝐺‘𝑁) = ⦋𝑁 / 𝑛⦌𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfisf 22012* | The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfisfcpmat 22013* | The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacffsupp 22014* | The "characteristic factor function" is finitely supported. (Contributed by AV, 20-Nov-2019.) (Proof shortened by AV, 23-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺 finSupp (0g‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmulcl 22015* | Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmul0 22016* | A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ 𝑋) · (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmulfsupp 22017* | A mapping of scaled values of the "characteristic factor function" is finitely supported. (Contributed by AV, 8-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfscmulgsum 22018* | Breaking up a sum of values of the "characteristic factor function" scaled by a polynomial. (Contributed by AV, 9-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulcl 22019* | Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ ℕ0) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) ∈ (Base‘𝑌)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmul0 22020* | The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝐾 ∈ (ℤ≥‘(𝑠 + 2))) → ((𝐾 ↑ (𝑇‘𝑀)) × (𝐺‘𝐾)) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulfsupp 22021* | A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖))) finSupp 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulgsum 22022* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ (𝑇‘𝑀)) × ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chfacfpmmulgsum2 22023* | Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘(𝑖 − 1)))) − (((𝑖 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑖)))))) + ((((𝑠 + 1) ↑ (𝑇‘𝑀)) × (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayhamlem1 22024* | Lemma 1 for cayleyhamilton 22048. (Contributed by AV, 11-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ ↑ = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ (𝑇‘𝑀)) × (𝐺‘𝑖)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In this section, a direct algebraic proof for the Cayley-Hamilton theorem is
provided, according to Wikipedia ("Cayley-Hamilton theorem", 09-Nov-2019,
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem, section
"A direct algebraic proof" (this approach is also used for proving Lemma 1.9 in
[Hefferon] p. 427):
Using this notation, we have:
Following the proof shown in Wikipedia, the following steps are performed:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadurid 22025 | The right-hand fundamental relation of the adjugate (see madurid 21802) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ − = (-g‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ × = (.r‘𝑌) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidgsum 22026* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑛)) · 1 ))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidgsumm2pm 22027* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum with a matrix to polynomial matrix transformation. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑋) · (𝑇‘(((coe1‘𝐾)‘𝑛) ∗ 𝑂)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmatlem1 22028* | Lemma 1 for cpmidpmat 22031. (Contributed by AV, 13-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ (𝐿 ∈ ℕ0 → (𝐺‘𝐿) = (((coe1‘𝐾)‘𝐿) ∗ 𝑂)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmatlem2 22029* | Lemma 2 for cpmidpmat 22031. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ (𝐵 ↑m ℕ0)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmatlem3 22030* | Lemma 3 for cpmidpmat 22031. (Contributed by AV, 14-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑘) ∗ 𝑂)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 finSupp (0g‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidpmat 22031* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑈 = (algSc‘𝑃) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) & ⊢ 𝑂 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑍 = (var1‘𝐴) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑄)) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼‘𝐻) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 𝑂) ∙ (𝑛𝐸𝑍))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadugsumlemB 22032* | Lemma B for cpmadugsum 22036. (Contributed by AV, 2-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadugsumlemC 22033* | Lemma C for cpmadugsum 22036. (Contributed by AV, 2-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadugsumlemF 22034* | Lemma F for cpmadugsum 22036. (Contributed by AV, 7-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadugsumfi 22035* | The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019.) (Proof shortened by AV, 29-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadugsum 22036* | The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidgsum2 22037* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmidg2sum 22038* | Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝑈 = (algSc‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadumatpolylem1 22039* | Lemma 1 for cpmadumatpoly 22041. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) ∈ (𝐵 ↑m ℕ0)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadumatpolylem2 22040* | Lemma 2 for cpmadumatpoly 22041. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cpmadumatpoly 22041* | The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayhamlem2 22042 | Lemma for cayhamlem3 22045. (Contributed by AV, 24-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ · = (.r‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀)) = ((𝐿 ↑ 𝑀) · ((𝐻‘𝐿) ∗ 1 ))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chcoeffeqlem 22043* | Lemma for chcoeffeq 22044. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((Poly1‘𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛))( ·𝑠 ‘(Poly1‘𝐴))(𝑛(.g‘(mulGrp‘(Poly1‘𝐴)))(var1‘𝐴))))) = ((Poly1‘𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 1 )( ·𝑠 ‘(Poly1‘𝐴))(𝑛(.g‘(mulGrp‘(Poly1‘𝐴)))(var1‘𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | chcoeffeq 22044* | The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayhamlem3 22045* | Lemma for cayhamlem4 22046. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayhamlem4 22046* | Lemma for cayleyhamilton 22048. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayleyhamilton0 22047* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22048 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22049)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝑍 = (0g‘𝑌) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayleyhamilton 22048* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayleyhamiltonALT 22049* | Alternate proof of cayleyhamilton 22048, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 22047 directly, but has the same structure as the proof of cayleyhamilton0 22047. In contrast to the proof of cayleyhamilton0 22047, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | cayleyhamilton1 22050* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22048, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹‘𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐿 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑍 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union, see toponuni 22072), and it may sometimes be more convenient to consider topologies without reference to the underlying set. This is why we define successively the class of topologies (df-top 22052), then the function which associates with a set the set of topologies on it (df-topon 22069), and finally the class of topological spaces, as extensible structures having an underlying set and a topology on it (df-topsp 22091). Of course, a topology is the same thing as a topology on a set (see toprntopon 22083). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | ctop 22051 | Syntax for the class of topologies. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class Top | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-top 22052* |
Define the class of topologies. It is a proper class (see topnex 22155).
See istopg 22053 and istop2g 22054 for the corresponding characterizations,
using respectively binary intersections like in this definition and
nonempty finite intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | istopg 22053* |
Express the predicate "𝐽 is a topology". See istop2g 22054 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | istop2g 22054* | Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 22053. (Contributed by NM, 19-Jul-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥((𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐽)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | uniopn 22055 | The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | iunopn 22056* | The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | inopn 22057 | The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fitop 22058 | A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fiinopn 22059 | The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ Top → ((𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | iinopn 22060* | The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | unopn 22061 | The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 0opn 22062 | The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 0ntop 22063 | The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ¬ ∅ ∈ Top | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topopn 22064 | The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | eltopss 22065 | A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | riinopn 22066* | A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | rintopn 22067 | A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | ctopon 22068 | Syntax for the function of topologies on sets. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class TopOn | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-topon 22069* | Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | istopon 22070 | Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topontop 22071 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponuni 22072 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topontopi 22073 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐽 ∈ Top | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponunii 22074 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐵 = ∪ 𝐽 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toptopon 22075 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toptopon2 22076 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topontopon 22077 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | funtopon 22078 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ Fun TopOn | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponrestid 22079 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐴 = (𝐴 ↾t 𝐵) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponsspwpw 22080 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dmtopon 22081 | The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ dom TopOn = V | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fntopon 22082 | The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17309 for Moore collections. (Contributed by BJ, 29-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ TopOn Fn V | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toprntopon 22083 | A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ Top = ∪ ran TopOn | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponmax 22084 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponss 22085 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponcom 22086 | If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | toponcomb 22087 | Biconditional form of toponcom 22086. (Contributed by BJ, 5-Dec-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topgele 22088 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topsn 22089 | The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4832). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | ctps 22090 | Syntax for the class of topological spaces. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class TopSp | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-topsp 22091 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | istps 22092 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | istps2 22093 | Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tpsuni 22094 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tpstop 22095 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tpspropd 22096 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tpsprop2d 22097 | A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | topontopn 22098 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tsettps 22099 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | istpsi 22100 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = 𝐽 & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |