MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpreima Structured version   Visualization version   GIF version

Theorem iinpreima 7041
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
Assertion
Ref Expression
iinpreima ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → Fun 𝐹)
2 cnvimass 6053 . . . . . . 7 (𝐹 𝑥𝐴 𝐵) ⊆ dom 𝐹
32sseli 3942 . . . . . 6 (𝑦 ∈ (𝐹 𝑥𝐴 𝐵) → 𝑦 ∈ dom 𝐹)
43adantl 481 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → 𝑦 ∈ dom 𝐹)
5 fvex 6871 . . . . . 6 (𝐹𝑦) ∈ V
6 fvimacnvi 7024 . . . . . . 7 ((Fun 𝐹𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
76adantlr 715 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
8 eliin 4960 . . . . . . 7 ((𝐹𝑦) ∈ V → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
98biimpa 476 . . . . . 6 (((𝐹𝑦) ∈ V ∧ (𝐹𝑦) ∈ 𝑥𝐴 𝐵) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
105, 7, 9sylancr 587 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
11 fvimacnv 7025 . . . . . . 7 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝐵𝑦 ∈ (𝐹𝐵)))
1211ralbidv 3156 . . . . . 6 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
1312biimpa 476 . . . . 5 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
141, 4, 10, 13syl21anc 837 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
15 eliin 4960 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
1615elv 3452 . . . 4 (𝑦 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
1714, 16sylibr 234 . . 3 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → 𝑦 𝑥𝐴 (𝐹𝐵))
18 simpll 766 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → Fun 𝐹)
1915biimpd 229 . . . . . . . 8 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐹𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
2019elv 3452 . . . . . . 7 (𝑦 𝑥𝐴 (𝐹𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
2120adantl 481 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
22 fvimacnvi 7024 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ (𝐹𝐵)) → (𝐹𝑦) ∈ 𝐵)
2322ex 412 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐵) → (𝐹𝑦) ∈ 𝐵))
2423ralimdv 3147 . . . . . 6 (Fun 𝐹 → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
2518, 21, 24sylc 65 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
265, 8ax-mp 5 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
2725, 26sylibr 234 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
28 r19.2zb 4459 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
2928biimpi 216 . . . . . . . . 9 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
30 cnvimass 6053 . . . . . . . . . . 11 (𝐹𝐵) ⊆ dom 𝐹
3130sseli 3942 . . . . . . . . . 10 (𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹)
3231rexlimivw 3130 . . . . . . . . 9 (∃𝑥𝐴 𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹)
3329, 32syl6 35 . . . . . . . 8 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3416, 33biimtrid 242 . . . . . . 7 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3534adantl 481 . . . . . 6 ((Fun 𝐹𝐴 ≠ ∅) → (𝑦 𝑥𝐴 (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3635imp 406 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → 𝑦 ∈ dom 𝐹)
37 fvimacnv 7025 . . . . 5 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵𝑦 ∈ (𝐹 𝑥𝐴 𝐵)))
3818, 36, 37syl2anc 584 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵𝑦 ∈ (𝐹 𝑥𝐴 𝐵)))
3927, 38mpbid 232 . . 3 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → 𝑦 ∈ (𝐹 𝑥𝐴 𝐵))
4017, 39impbida 800 . 2 ((Fun 𝐹𝐴 ≠ ∅) → (𝑦 ∈ (𝐹 𝑥𝐴 𝐵) ↔ 𝑦 𝑥𝐴 (𝐹𝐵)))
4140eqrdv 2727 1 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  c0 4296   ciin 4956  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iin 4958  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  intpreima  7042
  Copyright terms: Public domain W3C validator