MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpreima Structured version   Visualization version   GIF version

Theorem iinpreima 6978
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
Assertion
Ref Expression
iinpreima ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → Fun 𝐹)
2 cnvimass 5999 . . . . . . 7 (𝐹 𝑥𝐴 𝐵) ⊆ dom 𝐹
32sseli 3922 . . . . . 6 (𝑦 ∈ (𝐹 𝑥𝐴 𝐵) → 𝑦 ∈ dom 𝐹)
43adantl 483 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → 𝑦 ∈ dom 𝐹)
5 fvex 6817 . . . . . 6 (𝐹𝑦) ∈ V
6 fvimacnvi 6961 . . . . . . 7 ((Fun 𝐹𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
76adantlr 713 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
8 eliin 4936 . . . . . . 7 ((𝐹𝑦) ∈ V → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
98biimpa 478 . . . . . 6 (((𝐹𝑦) ∈ V ∧ (𝐹𝑦) ∈ 𝑥𝐴 𝐵) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
105, 7, 9sylancr 588 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
11 fvimacnv 6962 . . . . . . 7 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝐵𝑦 ∈ (𝐹𝐵)))
1211ralbidv 3171 . . . . . 6 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
1312biimpa 478 . . . . 5 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
141, 4, 10, 13syl21anc 836 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
15 eliin 4936 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
1615elv 3443 . . . 4 (𝑦 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
1714, 16sylibr 233 . . 3 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → 𝑦 𝑥𝐴 (𝐹𝐵))
18 simpll 765 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → Fun 𝐹)
1915biimpd 228 . . . . . . . 8 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐹𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
2019elv 3443 . . . . . . 7 (𝑦 𝑥𝐴 (𝐹𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
2120adantl 483 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
22 fvimacnvi 6961 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ (𝐹𝐵)) → (𝐹𝑦) ∈ 𝐵)
2322ex 414 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐵) → (𝐹𝑦) ∈ 𝐵))
2423ralimdv 3163 . . . . . 6 (Fun 𝐹 → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
2518, 21, 24sylc 65 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
265, 8ax-mp 5 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
2725, 26sylibr 233 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
28 r19.2zb 4432 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
2928biimpi 215 . . . . . . . . 9 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
30 cnvimass 5999 . . . . . . . . . . 11 (𝐹𝐵) ⊆ dom 𝐹
3130sseli 3922 . . . . . . . . . 10 (𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹)
3231rexlimivw 3145 . . . . . . . . 9 (∃𝑥𝐴 𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹)
3329, 32syl6 35 . . . . . . . 8 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3416, 33biimtrid 241 . . . . . . 7 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3534adantl 483 . . . . . 6 ((Fun 𝐹𝐴 ≠ ∅) → (𝑦 𝑥𝐴 (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3635imp 408 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → 𝑦 ∈ dom 𝐹)
37 fvimacnv 6962 . . . . 5 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵𝑦 ∈ (𝐹 𝑥𝐴 𝐵)))
3818, 36, 37syl2anc 585 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵𝑦 ∈ (𝐹 𝑥𝐴 𝐵)))
3927, 38mpbid 231 . . 3 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → 𝑦 ∈ (𝐹 𝑥𝐴 𝐵))
4017, 39impbida 799 . 2 ((Fun 𝐹𝐴 ≠ ∅) → (𝑦 ∈ (𝐹 𝑥𝐴 𝐵) ↔ 𝑦 𝑥𝐴 (𝐹𝐵)))
4140eqrdv 2734 1 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  Vcvv 3437  c0 4262   ciin 4932  ccnv 5599  dom cdm 5600  cima 5603  Fun wfun 6452  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iin 4934  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466
This theorem is referenced by:  intpreima  6979
  Copyright terms: Public domain W3C validator