MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpreima Structured version   Visualization version   GIF version

Theorem iinpreima 7044
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
Assertion
Ref Expression
iinpreima ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → Fun 𝐹)
2 cnvimass 6056 . . . . . . 7 (𝐹 𝑥𝐴 𝐵) ⊆ dom 𝐹
32sseli 3945 . . . . . 6 (𝑦 ∈ (𝐹 𝑥𝐴 𝐵) → 𝑦 ∈ dom 𝐹)
43adantl 481 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → 𝑦 ∈ dom 𝐹)
5 fvex 6874 . . . . . 6 (𝐹𝑦) ∈ V
6 fvimacnvi 7027 . . . . . . 7 ((Fun 𝐹𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
76adantlr 715 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
8 eliin 4963 . . . . . . 7 ((𝐹𝑦) ∈ V → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
98biimpa 476 . . . . . 6 (((𝐹𝑦) ∈ V ∧ (𝐹𝑦) ∈ 𝑥𝐴 𝐵) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
105, 7, 9sylancr 587 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
11 fvimacnv 7028 . . . . . . 7 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝐵𝑦 ∈ (𝐹𝐵)))
1211ralbidv 3157 . . . . . 6 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
1312biimpa 476 . . . . 5 (((Fun 𝐹𝑦 ∈ dom 𝐹) ∧ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
141, 4, 10, 13syl21anc 837 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
15 eliin 4963 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
1615elv 3455 . . . 4 (𝑦 𝑥𝐴 (𝐹𝐵) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
1714, 16sylibr 234 . . 3 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 ∈ (𝐹 𝑥𝐴 𝐵)) → 𝑦 𝑥𝐴 (𝐹𝐵))
18 simpll 766 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → Fun 𝐹)
1915biimpd 229 . . . . . . . 8 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐹𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
2019elv 3455 . . . . . . 7 (𝑦 𝑥𝐴 (𝐹𝐵) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
2120adantl 481 . . . . . 6 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ∀𝑥𝐴 𝑦 ∈ (𝐹𝐵))
22 fvimacnvi 7027 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ (𝐹𝐵)) → (𝐹𝑦) ∈ 𝐵)
2322ex 412 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐵) → (𝐹𝑦) ∈ 𝐵))
2423ralimdv 3148 . . . . . 6 (Fun 𝐹 → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵))
2518, 21, 24sylc 65 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
265, 8ax-mp 5 . . . . 5 ((𝐹𝑦) ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑦) ∈ 𝐵)
2725, 26sylibr 234 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → (𝐹𝑦) ∈ 𝑥𝐴 𝐵)
28 r19.2zb 4462 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
2928biimpi 216 . . . . . . . . 9 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → ∃𝑥𝐴 𝑦 ∈ (𝐹𝐵)))
30 cnvimass 6056 . . . . . . . . . . 11 (𝐹𝐵) ⊆ dom 𝐹
3130sseli 3945 . . . . . . . . . 10 (𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹)
3231rexlimivw 3131 . . . . . . . . 9 (∃𝑥𝐴 𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹)
3329, 32syl6 35 . . . . . . . 8 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3416, 33biimtrid 242 . . . . . . 7 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3534adantl 481 . . . . . 6 ((Fun 𝐹𝐴 ≠ ∅) → (𝑦 𝑥𝐴 (𝐹𝐵) → 𝑦 ∈ dom 𝐹))
3635imp 406 . . . . 5 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → 𝑦 ∈ dom 𝐹)
37 fvimacnv 7028 . . . . 5 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵𝑦 ∈ (𝐹 𝑥𝐴 𝐵)))
3818, 36, 37syl2anc 584 . . . 4 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → ((𝐹𝑦) ∈ 𝑥𝐴 𝐵𝑦 ∈ (𝐹 𝑥𝐴 𝐵)))
3927, 38mpbid 232 . . 3 (((Fun 𝐹𝐴 ≠ ∅) ∧ 𝑦 𝑥𝐴 (𝐹𝐵)) → 𝑦 ∈ (𝐹 𝑥𝐴 𝐵))
4017, 39impbida 800 . 2 ((Fun 𝐹𝐴 ≠ ∅) → (𝑦 ∈ (𝐹 𝑥𝐴 𝐵) ↔ 𝑦 𝑥𝐴 (𝐹𝐵)))
4140eqrdv 2728 1 ((Fun 𝐹𝐴 ≠ ∅) → (𝐹 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  c0 4299   ciin 4959  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iin 4961  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  intpreima  7045
  Copyright terms: Public domain W3C validator