Step | Hyp | Ref
| Expression |
1 | | simpll 765 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → Fun 𝐹) |
2 | | cnvimass 5999 |
. . . . . . 7
⊢ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) ⊆ dom 𝐹 |
3 | 2 | sseli 3922 |
. . . . . 6
⊢ (𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) → 𝑦 ∈ dom 𝐹) |
4 | 3 | adantl 483 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → 𝑦 ∈ dom 𝐹) |
5 | | fvex 6817 |
. . . . . 6
⊢ (𝐹‘𝑦) ∈ V |
6 | | fvimacnvi 6961 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) |
7 | 6 | adantlr 713 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) |
8 | | eliin 4936 |
. . . . . . 7
⊢ ((𝐹‘𝑦) ∈ V → ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
9 | 8 | biimpa 478 |
. . . . . 6
⊢ (((𝐹‘𝑦) ∈ V ∧ (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
10 | 5, 7, 9 | sylancr 588 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
11 | | fvimacnv 6962 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝐵 ↔ 𝑦 ∈ (◡𝐹 “ 𝐵))) |
12 | 11 | ralbidv 3171 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
13 | 12 | biimpa 478 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
14 | 1, 4, 10, 13 | syl21anc 836 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
15 | | eliin 4936 |
. . . . 5
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
16 | 15 | elv 3443 |
. . . 4
⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
17 | 14, 16 | sylibr 233 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
18 | | simpll 765 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → Fun 𝐹) |
19 | 15 | biimpd 228 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
20 | 19 | elv 3443 |
. . . . . . 7
⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
21 | 20 | adantl 483 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
22 | | fvimacnvi 6961 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝑦) ∈ 𝐵) |
23 | 22 | ex 414 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝑦 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝑦) ∈ 𝐵)) |
24 | 23 | ralimdv 3163 |
. . . . . 6
⊢ (Fun
𝐹 → (∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
25 | 18, 21, 24 | sylc 65 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
26 | 5, 8 | ax-mp 5 |
. . . . 5
⊢ ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
27 | 25, 26 | sylibr 233 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) |
28 | | r19.2zb 4432 |
. . . . . . . . . 10
⊢ (𝐴 ≠ ∅ ↔
(∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
29 | 28 | biimpi 215 |
. . . . . . . . 9
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
30 | | cnvimass 5999 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 |
31 | 30 | sseli 3922 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹) |
32 | 31 | rexlimivw 3145 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹) |
33 | 29, 32 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹)) |
34 | 16, 33 | biimtrid 241 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹)) |
35 | 34 | adantl 483 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐴 ≠ ∅) → (𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹)) |
36 | 35 | imp 408 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → 𝑦 ∈ dom 𝐹) |
37 | | fvimacnv 6962 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵))) |
38 | 18, 36, 37 | syl2anc 585 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵))) |
39 | 27, 38 | mpbid 231 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) |
40 | 17, 39 | impbida 799 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐴 ≠ ∅) → (𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) ↔ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵))) |
41 | 40 | eqrdv 2734 |
1
⊢ ((Fun
𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) = ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |