Step | Hyp | Ref
| Expression |
1 | | simpll 785 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → Fun 𝐹) |
2 | | cnvimass 5726 |
. . . . . . 7
⊢ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) ⊆ dom 𝐹 |
3 | 2 | sseli 3823 |
. . . . . 6
⊢ (𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) → 𝑦 ∈ dom 𝐹) |
4 | 3 | adantl 475 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → 𝑦 ∈ dom 𝐹) |
5 | | fvex 6446 |
. . . . . 6
⊢ (𝐹‘𝑦) ∈ V |
6 | | fvimacnvi 6580 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) |
7 | 6 | adantlr 708 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) |
8 | | eliin 4745 |
. . . . . . 7
⊢ ((𝐹‘𝑦) ∈ V → ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
9 | 8 | biimpa 470 |
. . . . . 6
⊢ (((𝐹‘𝑦) ∈ V ∧ (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
10 | 5, 7, 9 | sylancr 583 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
11 | | fvimacnv 6581 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ 𝐵 ↔ 𝑦 ∈ (◡𝐹 “ 𝐵))) |
12 | 11 | ralbidv 3195 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
13 | 12 | biimpa 470 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
14 | 1, 4, 10, 13 | syl21anc 873 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
15 | | vex 3417 |
. . . . 5
⊢ 𝑦 ∈ V |
16 | | eliin 4745 |
. . . . 5
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
17 | 15, 16 | ax-mp 5 |
. . . 4
⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
18 | 14, 17 | sylibr 226 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) → 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |
19 | | simpll 785 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → Fun 𝐹) |
20 | 16 | biimpd 221 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
21 | 15, 20 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
22 | 21 | adantl 475 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → ∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵)) |
23 | | fvimacnvi 6580 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝑦) ∈ 𝐵) |
24 | 23 | ex 403 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝑦 ∈ (◡𝐹 “ 𝐵) → (𝐹‘𝑦) ∈ 𝐵)) |
25 | 24 | ralimdv 3172 |
. . . . . 6
⊢ (Fun
𝐹 → (∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵)) |
26 | 19, 22, 25 | sylc 65 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
27 | 5, 8 | ax-mp 5 |
. . . . 5
⊢ ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐵) |
28 | 26, 27 | sylibr 226 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → (𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵) |
29 | | r19.2zb 4283 |
. . . . . . . . . 10
⊢ (𝐴 ≠ ∅ ↔
(∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
30 | 29 | biimpi 208 |
. . . . . . . . 9
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵))) |
31 | | cnvimass 5726 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 |
32 | 31 | sseli 3823 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹) |
33 | 32 | rexlimivw 3238 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹) |
34 | 30, 33 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ →
(∀𝑥 ∈ 𝐴 𝑦 ∈ (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹)) |
35 | 17, 34 | syl5bi 234 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹)) |
36 | 35 | adantl 475 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐴 ≠ ∅) → (𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵) → 𝑦 ∈ dom 𝐹)) |
37 | 36 | imp 397 |
. . . . 5
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → 𝑦 ∈ dom 𝐹) |
38 | | fvimacnv 6581 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵))) |
39 | 19, 37, 38 | syl2anc 581 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → ((𝐹‘𝑦) ∈ ∩
𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵))) |
40 | 28, 39 | mpbid 224 |
. . 3
⊢ (((Fun
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) → 𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵)) |
41 | 18, 40 | impbida 837 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐴 ≠ ∅) → (𝑦 ∈ (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) ↔ 𝑦 ∈ ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵))) |
42 | 41 | eqrdv 2823 |
1
⊢ ((Fun
𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ ∩
𝑥 ∈ 𝐴 𝐵) = ∩
𝑥 ∈ 𝐴 (◡𝐹 “ 𝐵)) |