Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnrect Structured version   Visualization version   GIF version

Theorem dya2iocnrect 31818
Description: For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
dya2iocnrect.1 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
Assertion
Ref Expression
dya2iocnrect ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑒,𝑏,𝑓,𝐴   𝑅,𝑏,𝑒,𝑓   𝑥,𝑏,𝑋,𝑒,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑢,𝑛)   𝐵(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑒,𝑓,𝑛,𝑏)   𝐽(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑋(𝑣,𝑢,𝑛)

Proof of Theorem dya2iocnrect
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dya2iocnrect.1 . . . . . 6 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
21eleq2i 2824 . . . . 5 (𝐴𝐵𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)))
3 eqid 2738 . . . . . 6 (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
4 vex 3402 . . . . . . 7 𝑒 ∈ V
5 vex 3402 . . . . . . 7 𝑓 ∈ V
64, 5xpex 7494 . . . . . 6 (𝑒 × 𝑓) ∈ V
73, 6elrnmpo 7302 . . . . 5 (𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ↔ ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
82, 7sylbb 222 . . . 4 (𝐴𝐵 → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
983ad2ant2 1135 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
10 simp1 1137 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
11 simp3 1139 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋𝐴)
129, 10, 11jca32 519 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
13 r19.41vv 3253 . . 3 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) ↔ (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
1413biimpri 231 . 2 ((∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
15 simprl 771 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (ℝ × ℝ))
16 simpl 486 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝐴 = (𝑒 × 𝑓))
17 simprr 773 . . . . . . 7 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋𝐴)
1817, 16eleqtrd 2835 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (𝑒 × 𝑓))
1915, 16, 183jca 1129 . . . . 5 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
20 simpr 488 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
21 xp1st 7746 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
22213ad2ant1 1134 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ ℝ)
2322adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ ℝ)
24 simpll 767 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑒 ∈ ran (,))
25 xp1st 7746 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (1st𝑋) ∈ 𝑒)
26253ad2ant3 1136 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ 𝑒)
2726adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ 𝑒)
28 sxbrsiga.0 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
29 dya2ioc.1 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3028, 29dya2icoseg2 31815 . . . . . . . 8 (((1st𝑋) ∈ ℝ ∧ 𝑒 ∈ ran (,) ∧ (1st𝑋) ∈ 𝑒) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
3123, 24, 27, 30syl3anc 1372 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
32 xp2nd 7747 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
33323ad2ant1 1134 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ ℝ)
3433adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ ℝ)
35 simplr 769 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑓 ∈ ran (,))
36 xp2nd 7747 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (2nd𝑋) ∈ 𝑓)
37363ad2ant3 1136 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ 𝑓)
3837adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ 𝑓)
3928, 29dya2icoseg2 31815 . . . . . . . 8 (((2nd𝑋) ∈ ℝ ∧ 𝑓 ∈ ran (,) ∧ (2nd𝑋) ∈ 𝑓) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
4034, 35, 38, 39syl3anc 1372 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
41 reeanv 3270 . . . . . . 7 (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) ↔ (∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓)))
4231, 40, 41sylanbrc 586 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))
43 eqid 2738 . . . . . . . . . . . 12 (𝑠 × 𝑡) = (𝑠 × 𝑡)
44 xpeq1 5539 . . . . . . . . . . . . . 14 (𝑢 = 𝑠 → (𝑢 × 𝑣) = (𝑠 × 𝑣))
4544eqeq2d 2749 . . . . . . . . . . . . 13 (𝑢 = 𝑠 → ((𝑠 × 𝑡) = (𝑢 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑣)))
46 xpeq2 5546 . . . . . . . . . . . . . 14 (𝑣 = 𝑡 → (𝑠 × 𝑣) = (𝑠 × 𝑡))
4746eqeq2d 2749 . . . . . . . . . . . . 13 (𝑣 = 𝑡 → ((𝑠 × 𝑡) = (𝑠 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑡)))
4845, 47rspc2ev 3538 . . . . . . . . . . . 12 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼 ∧ (𝑠 × 𝑡) = (𝑠 × 𝑡)) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
4943, 48mp3an3 1451 . . . . . . . . . . 11 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
50 dya2ioc.2 . . . . . . . . . . . 12 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
51 vex 3402 . . . . . . . . . . . . 13 𝑢 ∈ V
52 vex 3402 . . . . . . . . . . . . 13 𝑣 ∈ V
5351, 52xpex 7494 . . . . . . . . . . . 12 (𝑢 × 𝑣) ∈ V
5450, 53elrnmpo 7302 . . . . . . . . . . 11 ((𝑠 × 𝑡) ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
5549, 54sylibr 237 . . . . . . . . . 10 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → (𝑠 × 𝑡) ∈ ran 𝑅)
5655ad2antrl 728 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ∈ ran 𝑅)
57 xpss 5541 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (V × V)
58 simpl1 1192 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (ℝ × ℝ))
5957, 58sseldi 3875 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (V × V))
60 simprrl 781 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((1st𝑋) ∈ 𝑠𝑠𝑒))
6160simpld 498 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (1st𝑋) ∈ 𝑠)
62 simprrr 782 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((2nd𝑋) ∈ 𝑡𝑡𝑓))
6362simpld 498 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (2nd𝑋) ∈ 𝑡)
64 elxp7 7749 . . . . . . . . . . 11 (𝑋 ∈ (𝑠 × 𝑡) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)))
6564biimpri 231 . . . . . . . . . 10 ((𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)) → 𝑋 ∈ (𝑠 × 𝑡))
6659, 61, 63, 65syl12anc 836 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (𝑠 × 𝑡))
6760simprd 499 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑠𝑒)
6862simprd 499 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑡𝑓)
69 xpss12 5540 . . . . . . . . . . 11 ((𝑠𝑒𝑡𝑓) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
7067, 68, 69syl2anc 587 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
71 simpl2 1193 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝐴 = (𝑒 × 𝑓))
7270, 71sseqtrrd 3918 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ 𝐴)
73 eleq2 2821 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑋𝑏𝑋 ∈ (𝑠 × 𝑡)))
74 sseq1 3902 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑏𝐴 ↔ (𝑠 × 𝑡) ⊆ 𝐴))
7573, 74anbi12d 634 . . . . . . . . . 10 (𝑏 = (𝑠 × 𝑡) → ((𝑋𝑏𝑏𝐴) ↔ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)))
7675rspcev 3526 . . . . . . . . 9 (((𝑠 × 𝑡) ∈ ran 𝑅 ∧ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7756, 66, 72, 76syl12anc 836 . . . . . . . 8 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7877exp32 424 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ((((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))))
7978rexlimdvv 3203 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8020, 42, 79sylc 65 . . . . 5 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8119, 80sylan2 596 . . . 4 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8281ex 416 . . 3 ((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) → ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8382rexlimivv 3202 . 2 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8412, 14, 833syl 18 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3054  Vcvv 3398  wss 3843   × cxp 5523  ran crn 5526  cfv 6339  (class class class)co 7170  cmpo 7172  1st c1st 7712  2nd c2nd 7713  cr 10614  1c1 10616   + caddc 10618   / cdiv 11375  2c2 11771  cz 12062  (,)cioo 12821  [,)cico 12823  cexp 13521  topGenctg 16814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-sin 15515  df-cos 15516  df-pi 15518  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-refld 20421  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-cmp 22138  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-fcls 22692  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-cfil 24007  df-cmet 24009  df-cms 24087  df-limc 24618  df-dv 24619  df-log 25300  df-cxp 25301  df-logb 25503
This theorem is referenced by:  dya2iocnei  31819
  Copyright terms: Public domain W3C validator