Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnrect Structured version   Visualization version   GIF version

Theorem dya2iocnrect 32148
Description: For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
dya2iocnrect.1 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
Assertion
Ref Expression
dya2iocnrect ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑒,𝑏,𝑓,𝐴   𝑅,𝑏,𝑒,𝑓   𝑥,𝑏,𝑋,𝑒,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑢,𝑛)   𝐵(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑒,𝑓,𝑛,𝑏)   𝐽(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑋(𝑣,𝑢,𝑛)

Proof of Theorem dya2iocnrect
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dya2iocnrect.1 . . . . . 6 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
21eleq2i 2830 . . . . 5 (𝐴𝐵𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)))
3 eqid 2738 . . . . . 6 (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
4 vex 3426 . . . . . . 7 𝑒 ∈ V
5 vex 3426 . . . . . . 7 𝑓 ∈ V
64, 5xpex 7581 . . . . . 6 (𝑒 × 𝑓) ∈ V
73, 6elrnmpo 7388 . . . . 5 (𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ↔ ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
82, 7sylbb 218 . . . 4 (𝐴𝐵 → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
983ad2ant2 1132 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
10 simp1 1134 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
11 simp3 1136 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋𝐴)
129, 10, 11jca32 515 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
13 r19.41vv 3275 . . 3 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) ↔ (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
1413biimpri 227 . 2 ((∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
15 simprl 767 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (ℝ × ℝ))
16 simpl 482 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝐴 = (𝑒 × 𝑓))
17 simprr 769 . . . . . . 7 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋𝐴)
1817, 16eleqtrd 2841 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (𝑒 × 𝑓))
1915, 16, 183jca 1126 . . . . 5 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
20 simpr 484 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
21 xp1st 7836 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
22213ad2ant1 1131 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ ℝ)
2322adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ ℝ)
24 simpll 763 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑒 ∈ ran (,))
25 xp1st 7836 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (1st𝑋) ∈ 𝑒)
26253ad2ant3 1133 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ 𝑒)
2726adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ 𝑒)
28 sxbrsiga.0 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
29 dya2ioc.1 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3028, 29dya2icoseg2 32145 . . . . . . . 8 (((1st𝑋) ∈ ℝ ∧ 𝑒 ∈ ran (,) ∧ (1st𝑋) ∈ 𝑒) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
3123, 24, 27, 30syl3anc 1369 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
32 xp2nd 7837 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
33323ad2ant1 1131 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ ℝ)
3433adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ ℝ)
35 simplr 765 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑓 ∈ ran (,))
36 xp2nd 7837 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (2nd𝑋) ∈ 𝑓)
37363ad2ant3 1133 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ 𝑓)
3837adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ 𝑓)
3928, 29dya2icoseg2 32145 . . . . . . . 8 (((2nd𝑋) ∈ ℝ ∧ 𝑓 ∈ ran (,) ∧ (2nd𝑋) ∈ 𝑓) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
4034, 35, 38, 39syl3anc 1369 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
41 reeanv 3292 . . . . . . 7 (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) ↔ (∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓)))
4231, 40, 41sylanbrc 582 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))
43 eqid 2738 . . . . . . . . . . . 12 (𝑠 × 𝑡) = (𝑠 × 𝑡)
44 xpeq1 5594 . . . . . . . . . . . . . 14 (𝑢 = 𝑠 → (𝑢 × 𝑣) = (𝑠 × 𝑣))
4544eqeq2d 2749 . . . . . . . . . . . . 13 (𝑢 = 𝑠 → ((𝑠 × 𝑡) = (𝑢 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑣)))
46 xpeq2 5601 . . . . . . . . . . . . . 14 (𝑣 = 𝑡 → (𝑠 × 𝑣) = (𝑠 × 𝑡))
4746eqeq2d 2749 . . . . . . . . . . . . 13 (𝑣 = 𝑡 → ((𝑠 × 𝑡) = (𝑠 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑡)))
4845, 47rspc2ev 3564 . . . . . . . . . . . 12 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼 ∧ (𝑠 × 𝑡) = (𝑠 × 𝑡)) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
4943, 48mp3an3 1448 . . . . . . . . . . 11 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
50 dya2ioc.2 . . . . . . . . . . . 12 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
51 vex 3426 . . . . . . . . . . . . 13 𝑢 ∈ V
52 vex 3426 . . . . . . . . . . . . 13 𝑣 ∈ V
5351, 52xpex 7581 . . . . . . . . . . . 12 (𝑢 × 𝑣) ∈ V
5450, 53elrnmpo 7388 . . . . . . . . . . 11 ((𝑠 × 𝑡) ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
5549, 54sylibr 233 . . . . . . . . . 10 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → (𝑠 × 𝑡) ∈ ran 𝑅)
5655ad2antrl 724 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ∈ ran 𝑅)
57 xpss 5596 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (V × V)
58 simpl1 1189 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (ℝ × ℝ))
5957, 58sselid 3915 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (V × V))
60 simprrl 777 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((1st𝑋) ∈ 𝑠𝑠𝑒))
6160simpld 494 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (1st𝑋) ∈ 𝑠)
62 simprrr 778 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((2nd𝑋) ∈ 𝑡𝑡𝑓))
6362simpld 494 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (2nd𝑋) ∈ 𝑡)
64 elxp7 7839 . . . . . . . . . . 11 (𝑋 ∈ (𝑠 × 𝑡) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)))
6564biimpri 227 . . . . . . . . . 10 ((𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)) → 𝑋 ∈ (𝑠 × 𝑡))
6659, 61, 63, 65syl12anc 833 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (𝑠 × 𝑡))
6760simprd 495 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑠𝑒)
6862simprd 495 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑡𝑓)
69 xpss12 5595 . . . . . . . . . . 11 ((𝑠𝑒𝑡𝑓) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
7067, 68, 69syl2anc 583 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
71 simpl2 1190 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝐴 = (𝑒 × 𝑓))
7270, 71sseqtrrd 3958 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ 𝐴)
73 eleq2 2827 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑋𝑏𝑋 ∈ (𝑠 × 𝑡)))
74 sseq1 3942 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑏𝐴 ↔ (𝑠 × 𝑡) ⊆ 𝐴))
7573, 74anbi12d 630 . . . . . . . . . 10 (𝑏 = (𝑠 × 𝑡) → ((𝑋𝑏𝑏𝐴) ↔ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)))
7675rspcev 3552 . . . . . . . . 9 (((𝑠 × 𝑡) ∈ ran 𝑅 ∧ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7756, 66, 72, 76syl12anc 833 . . . . . . . 8 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7877exp32 420 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ((((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))))
7978rexlimdvv 3221 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8020, 42, 79sylc 65 . . . . 5 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8119, 80sylan2 592 . . . 4 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8281ex 412 . . 3 ((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) → ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8382rexlimivv 3220 . 2 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8412, 14, 833syl 18 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  wss 3883   × cxp 5578  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  cr 10801  1c1 10803   + caddc 10805   / cdiv 11562  2c2 11958  cz 12249  (,)cioo 13008  [,)cico 13010  cexp 13710  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-refld 20722  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-fcls 23000  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-cfil 24324  df-cmet 24326  df-cms 24404  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-logb 25820
This theorem is referenced by:  dya2iocnei  32149
  Copyright terms: Public domain W3C validator