Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnrect Structured version   Visualization version   GIF version

Theorem dya2iocnrect 31649
Description: For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
dya2iocnrect.1 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
Assertion
Ref Expression
dya2iocnrect ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑒,𝑏,𝑓,𝐴   𝑅,𝑏,𝑒,𝑓   𝑥,𝑏,𝑋,𝑒,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑢,𝑛)   𝐵(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑒,𝑓,𝑛,𝑏)   𝐽(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑋(𝑣,𝑢,𝑛)

Proof of Theorem dya2iocnrect
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dya2iocnrect.1 . . . . . 6 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
21eleq2i 2881 . . . . 5 (𝐴𝐵𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)))
3 eqid 2798 . . . . . 6 (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
4 vex 3444 . . . . . . 7 𝑒 ∈ V
5 vex 3444 . . . . . . 7 𝑓 ∈ V
64, 5xpex 7456 . . . . . 6 (𝑒 × 𝑓) ∈ V
73, 6elrnmpo 7266 . . . . 5 (𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ↔ ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
82, 7sylbb 222 . . . 4 (𝐴𝐵 → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
983ad2ant2 1131 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
10 simp1 1133 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
11 simp3 1135 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋𝐴)
129, 10, 11jca32 519 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
13 r19.41vv 3302 . . 3 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) ↔ (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
1413biimpri 231 . 2 ((∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
15 simprl 770 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (ℝ × ℝ))
16 simpl 486 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝐴 = (𝑒 × 𝑓))
17 simprr 772 . . . . . . 7 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋𝐴)
1817, 16eleqtrd 2892 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (𝑒 × 𝑓))
1915, 16, 183jca 1125 . . . . 5 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
20 simpr 488 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
21 xp1st 7703 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
22213ad2ant1 1130 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ ℝ)
2322adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ ℝ)
24 simpll 766 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑒 ∈ ran (,))
25 xp1st 7703 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (1st𝑋) ∈ 𝑒)
26253ad2ant3 1132 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ 𝑒)
2726adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ 𝑒)
28 sxbrsiga.0 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
29 dya2ioc.1 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3028, 29dya2icoseg2 31646 . . . . . . . 8 (((1st𝑋) ∈ ℝ ∧ 𝑒 ∈ ran (,) ∧ (1st𝑋) ∈ 𝑒) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
3123, 24, 27, 30syl3anc 1368 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
32 xp2nd 7704 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
33323ad2ant1 1130 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ ℝ)
3433adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ ℝ)
35 simplr 768 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑓 ∈ ran (,))
36 xp2nd 7704 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (2nd𝑋) ∈ 𝑓)
37363ad2ant3 1132 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ 𝑓)
3837adantl 485 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ 𝑓)
3928, 29dya2icoseg2 31646 . . . . . . . 8 (((2nd𝑋) ∈ ℝ ∧ 𝑓 ∈ ran (,) ∧ (2nd𝑋) ∈ 𝑓) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
4034, 35, 38, 39syl3anc 1368 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
41 reeanv 3320 . . . . . . 7 (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) ↔ (∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓)))
4231, 40, 41sylanbrc 586 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))
43 eqid 2798 . . . . . . . . . . . 12 (𝑠 × 𝑡) = (𝑠 × 𝑡)
44 xpeq1 5533 . . . . . . . . . . . . . 14 (𝑢 = 𝑠 → (𝑢 × 𝑣) = (𝑠 × 𝑣))
4544eqeq2d 2809 . . . . . . . . . . . . 13 (𝑢 = 𝑠 → ((𝑠 × 𝑡) = (𝑢 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑣)))
46 xpeq2 5540 . . . . . . . . . . . . . 14 (𝑣 = 𝑡 → (𝑠 × 𝑣) = (𝑠 × 𝑡))
4746eqeq2d 2809 . . . . . . . . . . . . 13 (𝑣 = 𝑡 → ((𝑠 × 𝑡) = (𝑠 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑡)))
4845, 47rspc2ev 3583 . . . . . . . . . . . 12 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼 ∧ (𝑠 × 𝑡) = (𝑠 × 𝑡)) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
4943, 48mp3an3 1447 . . . . . . . . . . 11 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
50 dya2ioc.2 . . . . . . . . . . . 12 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
51 vex 3444 . . . . . . . . . . . . 13 𝑢 ∈ V
52 vex 3444 . . . . . . . . . . . . 13 𝑣 ∈ V
5351, 52xpex 7456 . . . . . . . . . . . 12 (𝑢 × 𝑣) ∈ V
5450, 53elrnmpo 7266 . . . . . . . . . . 11 ((𝑠 × 𝑡) ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
5549, 54sylibr 237 . . . . . . . . . 10 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → (𝑠 × 𝑡) ∈ ran 𝑅)
5655ad2antrl 727 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ∈ ran 𝑅)
57 xpss 5535 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (V × V)
58 simpl1 1188 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (ℝ × ℝ))
5957, 58sseldi 3913 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (V × V))
60 simprrl 780 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((1st𝑋) ∈ 𝑠𝑠𝑒))
6160simpld 498 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (1st𝑋) ∈ 𝑠)
62 simprrr 781 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((2nd𝑋) ∈ 𝑡𝑡𝑓))
6362simpld 498 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (2nd𝑋) ∈ 𝑡)
64 elxp7 7706 . . . . . . . . . . 11 (𝑋 ∈ (𝑠 × 𝑡) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)))
6564biimpri 231 . . . . . . . . . 10 ((𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)) → 𝑋 ∈ (𝑠 × 𝑡))
6659, 61, 63, 65syl12anc 835 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (𝑠 × 𝑡))
6760simprd 499 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑠𝑒)
6862simprd 499 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑡𝑓)
69 xpss12 5534 . . . . . . . . . . 11 ((𝑠𝑒𝑡𝑓) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
7067, 68, 69syl2anc 587 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
71 simpl2 1189 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝐴 = (𝑒 × 𝑓))
7270, 71sseqtrrd 3956 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ 𝐴)
73 eleq2 2878 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑋𝑏𝑋 ∈ (𝑠 × 𝑡)))
74 sseq1 3940 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑏𝐴 ↔ (𝑠 × 𝑡) ⊆ 𝐴))
7573, 74anbi12d 633 . . . . . . . . . 10 (𝑏 = (𝑠 × 𝑡) → ((𝑋𝑏𝑏𝐴) ↔ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)))
7675rspcev 3571 . . . . . . . . 9 (((𝑠 × 𝑡) ∈ ran 𝑅 ∧ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7756, 66, 72, 76syl12anc 835 . . . . . . . 8 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7877exp32 424 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ((((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))))
7978rexlimdvv 3252 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8020, 42, 79sylc 65 . . . . 5 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8119, 80sylan2 595 . . . 4 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8281ex 416 . . 3 ((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) → ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8382rexlimivv 3251 . 2 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8412, 14, 833syl 18 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  wss 3881   × cxp 5517  ran crn 5520  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  cr 10525  1c1 10527   + caddc 10529   / cdiv 11286  2c2 11680  cz 11969  (,)cioo 12726  [,)cico 12728  cexp 13425  topGenctg 16703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-refld 20294  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-fcls 22546  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-cfil 23859  df-cmet 23861  df-cms 23939  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149  df-logb 25351
This theorem is referenced by:  dya2iocnei  31650
  Copyright terms: Public domain W3C validator