Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocnrect Structured version   Visualization version   GIF version

Theorem dya2iocnrect 34246
Description: For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
dya2iocnrect.1 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
Assertion
Ref Expression
dya2iocnrect ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑒,𝑏,𝑓,𝐴   𝑅,𝑏,𝑒,𝑓   𝑥,𝑏,𝑋,𝑒,𝑓
Allowed substitution hints:   𝐴(𝑥,𝑣,𝑢,𝑛)   𝐵(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑒,𝑓,𝑛,𝑏)   𝐽(𝑥,𝑣,𝑢,𝑒,𝑓,𝑛,𝑏)   𝑋(𝑣,𝑢,𝑛)

Proof of Theorem dya2iocnrect
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dya2iocnrect.1 . . . . . 6 𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
21eleq2i 2836 . . . . 5 (𝐴𝐵𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)))
3 eqid 2740 . . . . . 6 (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))
4 vex 3492 . . . . . . 7 𝑒 ∈ V
5 vex 3492 . . . . . . 7 𝑓 ∈ V
64, 5xpex 7788 . . . . . 6 (𝑒 × 𝑓) ∈ V
73, 6elrnmpo 7586 . . . . 5 (𝐴 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ↔ ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
82, 7sylbb 219 . . . 4 (𝐴𝐵 → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
983ad2ant2 1134 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓))
10 simp1 1136 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
11 simp3 1138 . . 3 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → 𝑋𝐴)
129, 10, 11jca32 515 . 2 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
13 r19.41vv 3233 . . 3 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) ↔ (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
1413biimpri 228 . 2 ((∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)))
15 simprl 770 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (ℝ × ℝ))
16 simpl 482 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝐴 = (𝑒 × 𝑓))
17 simprr 772 . . . . . . 7 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋𝐴)
1817, 16eleqtrd 2846 . . . . . 6 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → 𝑋 ∈ (𝑒 × 𝑓))
1915, 16, 183jca 1128 . . . . 5 ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
20 simpr 484 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)))
21 xp1st 8062 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
22213ad2ant1 1133 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ ℝ)
2322adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ ℝ)
24 simpll 766 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑒 ∈ ran (,))
25 xp1st 8062 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (1st𝑋) ∈ 𝑒)
26253ad2ant3 1135 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (1st𝑋) ∈ 𝑒)
2726adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (1st𝑋) ∈ 𝑒)
28 sxbrsiga.0 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
29 dya2ioc.1 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
3028, 29dya2icoseg2 34243 . . . . . . . 8 (((1st𝑋) ∈ ℝ ∧ 𝑒 ∈ ran (,) ∧ (1st𝑋) ∈ 𝑒) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
3123, 24, 27, 30syl3anc 1371 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒))
32 xp2nd 8063 . . . . . . . . . 10 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
33323ad2ant1 1133 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ ℝ)
3433adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ ℝ)
35 simplr 768 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → 𝑓 ∈ ran (,))
36 xp2nd 8063 . . . . . . . . . 10 (𝑋 ∈ (𝑒 × 𝑓) → (2nd𝑋) ∈ 𝑓)
37363ad2ant3 1135 . . . . . . . . 9 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (2nd𝑋) ∈ 𝑓)
3837adantl 481 . . . . . . . 8 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → (2nd𝑋) ∈ 𝑓)
3928, 29dya2icoseg2 34243 . . . . . . . 8 (((2nd𝑋) ∈ ℝ ∧ 𝑓 ∈ ran (,) ∧ (2nd𝑋) ∈ 𝑓) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
4034, 35, 38, 39syl3anc 1371 . . . . . . 7 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓))
41 reeanv 3235 . . . . . . 7 (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) ↔ (∃𝑠 ∈ ran 𝐼((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ∃𝑡 ∈ ran 𝐼((2nd𝑋) ∈ 𝑡𝑡𝑓)))
4231, 40, 41sylanbrc 582 . . . . . 6 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))
43 eqid 2740 . . . . . . . . . . . 12 (𝑠 × 𝑡) = (𝑠 × 𝑡)
44 xpeq1 5714 . . . . . . . . . . . . . 14 (𝑢 = 𝑠 → (𝑢 × 𝑣) = (𝑠 × 𝑣))
4544eqeq2d 2751 . . . . . . . . . . . . 13 (𝑢 = 𝑠 → ((𝑠 × 𝑡) = (𝑢 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑣)))
46 xpeq2 5721 . . . . . . . . . . . . . 14 (𝑣 = 𝑡 → (𝑠 × 𝑣) = (𝑠 × 𝑡))
4746eqeq2d 2751 . . . . . . . . . . . . 13 (𝑣 = 𝑡 → ((𝑠 × 𝑡) = (𝑠 × 𝑣) ↔ (𝑠 × 𝑡) = (𝑠 × 𝑡)))
4845, 47rspc2ev 3648 . . . . . . . . . . . 12 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼 ∧ (𝑠 × 𝑡) = (𝑠 × 𝑡)) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
4943, 48mp3an3 1450 . . . . . . . . . . 11 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
50 dya2ioc.2 . . . . . . . . . . . 12 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
51 vex 3492 . . . . . . . . . . . . 13 𝑢 ∈ V
52 vex 3492 . . . . . . . . . . . . 13 𝑣 ∈ V
5351, 52xpex 7788 . . . . . . . . . . . 12 (𝑢 × 𝑣) ∈ V
5450, 53elrnmpo 7586 . . . . . . . . . . 11 ((𝑠 × 𝑡) ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼(𝑠 × 𝑡) = (𝑢 × 𝑣))
5549, 54sylibr 234 . . . . . . . . . 10 ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → (𝑠 × 𝑡) ∈ ran 𝑅)
5655ad2antrl 727 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ∈ ran 𝑅)
57 xpss 5716 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (V × V)
58 simpl1 1191 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (ℝ × ℝ))
5957, 58sselid 4006 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (V × V))
60 simprrl 780 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((1st𝑋) ∈ 𝑠𝑠𝑒))
6160simpld 494 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (1st𝑋) ∈ 𝑠)
62 simprrr 781 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ((2nd𝑋) ∈ 𝑡𝑡𝑓))
6362simpld 494 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (2nd𝑋) ∈ 𝑡)
64 elxp7 8065 . . . . . . . . . . 11 (𝑋 ∈ (𝑠 × 𝑡) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)))
6564biimpri 228 . . . . . . . . . 10 ((𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ 𝑠 ∧ (2nd𝑋) ∈ 𝑡)) → 𝑋 ∈ (𝑠 × 𝑡))
6659, 61, 63, 65syl12anc 836 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑋 ∈ (𝑠 × 𝑡))
6760simprd 495 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑠𝑒)
6862simprd 495 . . . . . . . . . . 11 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝑡𝑓)
69 xpss12 5715 . . . . . . . . . . 11 ((𝑠𝑒𝑡𝑓) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
7067, 68, 69syl2anc 583 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ (𝑒 × 𝑓))
71 simpl2 1192 . . . . . . . . . 10 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → 𝐴 = (𝑒 × 𝑓))
7270, 71sseqtrrd 4050 . . . . . . . . 9 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → (𝑠 × 𝑡) ⊆ 𝐴)
73 eleq2 2833 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑋𝑏𝑋 ∈ (𝑠 × 𝑡)))
74 sseq1 4034 . . . . . . . . . . 11 (𝑏 = (𝑠 × 𝑡) → (𝑏𝐴 ↔ (𝑠 × 𝑡) ⊆ 𝐴))
7573, 74anbi12d 631 . . . . . . . . . 10 (𝑏 = (𝑠 × 𝑡) → ((𝑋𝑏𝑏𝐴) ↔ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)))
7675rspcev 3635 . . . . . . . . 9 (((𝑠 × 𝑡) ∈ ran 𝑅 ∧ (𝑋 ∈ (𝑠 × 𝑡) ∧ (𝑠 × 𝑡) ⊆ 𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7756, 66, 72, 76syl12anc 836 . . . . . . . 8 (((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) ∧ ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) ∧ (((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
7877exp32 420 . . . . . . 7 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → ((𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼) → ((((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))))
7978rexlimdvv 3218 . . . . . 6 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓)) → (∃𝑠 ∈ ran 𝐼𝑡 ∈ ran 𝐼(((1st𝑋) ∈ 𝑠𝑠𝑒) ∧ ((2nd𝑋) ∈ 𝑡𝑡𝑓)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8020, 42, 79sylc 65 . . . . 5 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝐴 = (𝑒 × 𝑓) ∧ 𝑋 ∈ (𝑒 × 𝑓))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8119, 80sylan2 592 . . . 4 (((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) ∧ (𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8281ex 412 . . 3 ((𝑒 ∈ ran (,) ∧ 𝑓 ∈ ran (,)) → ((𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴)))
8382rexlimivv 3207 . 2 (∃𝑒 ∈ ran (,)∃𝑓 ∈ ran (,)(𝐴 = (𝑒 × 𝑓) ∧ (𝑋 ∈ (ℝ × ℝ) ∧ 𝑋𝐴)) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
8412, 14, 833syl 18 1 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   × cxp 5698  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  1st c1st 8028  2nd c2nd 8029  cr 11183  1c1 11185   + caddc 11187   / cdiv 11947  2c2 12348  cz 12639  (,)cioo 13407  [,)cico 13409  cexp 14112  topGenctg 17497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-refld 21646  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-fcls 23970  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-cfil 25308  df-cmet 25310  df-cms 25388  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-logb 26826
This theorem is referenced by:  dya2iocnei  34247
  Copyright terms: Public domain W3C validator