MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsdilem2 Structured version   Visualization version   GIF version

Theorem addsdilem2 27536
Description: Lemma for surreal distribution. Expand the right hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
addsdilem.1 (𝜑𝐴 No )
addsdilem.2 (𝜑𝐵 No )
addsdilem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsdilem2 (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))))
Distinct variable groups:   𝐴,𝑎,𝑥𝐿   𝐴,𝑥𝑅,𝑦𝐿   𝐴,𝑦𝑅   𝐴,𝑧𝐿   𝐴,𝑧𝑅   𝐵,𝑎,𝑥𝐿   𝐵,𝑥𝑅,𝑦𝐿   𝐵,𝑦𝑅   𝐵,𝑧𝐿   𝐵,𝑧𝑅   𝐶,𝑎,𝑥𝐿   𝐶,𝑥𝑅,𝑦𝐿   𝐶,𝑦𝑅   𝐶,𝑧𝐿   𝐶,𝑧𝑅   𝑎,𝑥𝑅,𝑦𝐿   𝑎,𝑦𝑅   𝑎,𝑧𝐿   𝑎,𝑧𝑅   𝑥𝐿,𝑦𝐿   𝑥𝐿,𝑦𝑅   𝑥𝐿,𝑧𝐿   𝑥𝐿,𝑧𝑅   𝑥𝑅,𝑦𝑅   𝑥𝑅,𝑧𝐿   𝑥𝑅,𝑧𝑅
Allowed substitution hints:   𝜑(𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅)

Proof of Theorem addsdilem2
Dummy variables 𝑏 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsdilem.1 . . . 4 (𝜑𝐴 No )
2 addsdilem.2 . . . 4 (𝜑𝐵 No )
31, 2mulscut2 27518 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}) <<s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}))
4 addsdilem.3 . . . 4 (𝜑𝐶 No )
51, 4mulscut2 27518 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}) <<s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}))
6 mulsval2 27496 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})))
71, 2, 6syl2anc 584 . . 3 (𝜑 → (𝐴 ·s 𝐵) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})))
8 mulsval2 27496 . . . 4 ((𝐴 No 𝐶 No ) → (𝐴 ·s 𝐶) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})))
91, 4, 8syl2anc 584 . . 3 (𝜑 → (𝐴 ·s 𝐶) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})))
103, 5, 7, 9addsunif 27414 . 2 (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = (({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}) |s ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)})))
11 unab 4295 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))}
12 rexun 4187 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
13 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))))
14132rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))))
1514rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
16 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
17 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
18 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∈ V
19 oveq1 7401 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2019eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))))
2118, 20ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2221rexbii 3094 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2317, 22bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2423rexbii 3094 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
25 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
2625exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
2716, 24, 263bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2815, 27bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
29 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))))
30292rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))))
3130rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
32 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
33 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
34 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∈ V
35 oveq1 7401 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
3635eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))))
3734, 36ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
3837rexbii 3094 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
3933, 38bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
4039rexbii 3094 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
41 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
4241exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
4332, 40, 423bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
4431, 43bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
4528, 44orbi12i 913 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))))
4612, 45bitr2i 275 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)))
4746abbii 2802 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
4811, 47eqtri 2760 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
49 unab 4295 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))}
50 rexun 4187 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
51 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
52512rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
5352rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
54 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
55 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
56 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∈ V
57 oveq2 7402 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
5857eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))))
5956, 58ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6059rexbii 3094 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6155, 60bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6261rexbii 3094 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
63 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
6463exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
6554, 62, 643bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6653, 65bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
67 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
68672rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
6968rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
70 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
71 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
72 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∈ V
73 oveq2 7402 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7473eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))))
7572, 74ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7675rexbii 3094 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7771, 76bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7877rexbii 3094 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
79 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
8079exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
8170, 78, 803bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
8269, 81bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
8366, 82orbi12i 913 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))))
8450, 83bitr2i 275 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡))
8584abbii 2802 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
8649, 85eqtri 2760 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
8748, 86uneq12i 4158 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) = ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)})
88 unab 4295 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))}
89 rexun 4187 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
90 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))))
91902rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))))
9291rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
93 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
94 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
95 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∈ V
96 oveq1 7401 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
9796eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))))
9895, 97ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
9998rexbii 3094 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
10094, 99bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
101100rexbii 3094 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
102 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
103102exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
10493, 101, 1033bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
10592, 104bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
106 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))))
1071062rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))))
108107rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
109 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
110 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
111 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∈ V
112 oveq1 7401 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
113112eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))))
114111, 113ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
115114rexbii 3094 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
116110, 115bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
117116rexbii 3094 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
118 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
119118exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
120109, 117, 1193bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
121108, 120bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
122105, 121orbi12i 913 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))))
12389, 122bitr2i 275 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)))
124123abbii 2802 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
12588, 124eqtri 2760 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
126 unab 4295 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))}
127 rexun 4187 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
128 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
1291282rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
130129rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
131 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
132 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
133 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∈ V
134 oveq2 7402 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
135134eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))))
136133, 135ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
137136rexbii 3094 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
138132, 137bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
139138rexbii 3094 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
140 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
141140exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
142131, 139, 1413bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
143130, 142bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
144 eqeq1 2736 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
1451442rexbidv 3219 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
146145rexab 3687 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
147 rexcom4 3285 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
148 rexcom4 3285 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
149 ovex 7427 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∈ V
150 oveq2 7402 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
151150eqeq2d 2743 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))))
152149, 151ceqsexv 3523 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
153152rexbii 3094 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
154148, 153bitr3i 276 . . . . . . . . . . 11 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
155154rexbii 3094 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
156 r19.41vv 3224 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
157156exbii 1850 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
158147, 155, 1573bitr3ri 301 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
159146, 158bitri 274 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
160143, 159orbi12i 913 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))))
161127, 160bitr2i 275 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡))
162161abbii 2802 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
163126, 162eqtri 2760 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
164125, 163uneq12i 4158 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))})) = ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)})
16587, 164oveq12i 7406 . 2 ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))) = (({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}) |s ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}))
16610, 165eqtr4di 2790 1 (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wrex 3070  cun 3943  cfv 6533  (class class class)co 7394   No csur 27072   |s cscut 27213   L cleft 27269   R cright 27270   +s cadds 27372   -s csubs 27424   ·s cmuls 27491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-1o 8450  df-2o 8451  df-nadd 8650  df-no 27075  df-slt 27076  df-bday 27077  df-sle 27177  df-sslt 27212  df-scut 27214  df-0s 27254  df-made 27271  df-old 27272  df-left 27274  df-right 27275  df-norec 27351  df-norec2 27362  df-adds 27373  df-negs 27425  df-subs 27426  df-muls 27492
This theorem is referenced by:  addsdi  27539
  Copyright terms: Public domain W3C validator