MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsdilem2 Structured version   Visualization version   GIF version

Theorem addsdilem2 28111
Description: Lemma for surreal distribution. Expand the right hand side of the main expression. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
addsdilem.1 (𝜑𝐴 No )
addsdilem.2 (𝜑𝐵 No )
addsdilem.3 (𝜑𝐶 No )
Assertion
Ref Expression
addsdilem2 (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))))
Distinct variable groups:   𝐴,𝑎,𝑥𝐿   𝐴,𝑥𝑅,𝑦𝐿   𝐴,𝑦𝑅   𝐴,𝑧𝐿   𝐴,𝑧𝑅   𝐵,𝑎,𝑥𝐿   𝐵,𝑥𝑅,𝑦𝐿   𝐵,𝑦𝑅   𝐵,𝑧𝐿   𝐵,𝑧𝑅   𝐶,𝑎,𝑥𝐿   𝐶,𝑥𝑅,𝑦𝐿   𝐶,𝑦𝑅   𝐶,𝑧𝐿   𝐶,𝑧𝑅   𝑎,𝑥𝑅,𝑦𝐿   𝑎,𝑦𝑅   𝑎,𝑧𝐿   𝑎,𝑧𝑅   𝑥𝐿,𝑦𝐿   𝑥𝐿,𝑦𝑅   𝑥𝐿,𝑧𝐿   𝑥𝐿,𝑧𝑅   𝑥𝑅,𝑦𝑅   𝑥𝑅,𝑧𝐿   𝑥𝑅,𝑧𝑅
Allowed substitution hints:   𝜑(𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅)

Proof of Theorem addsdilem2
Dummy variables 𝑏 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsdilem.1 . . . 4 (𝜑𝐴 No )
2 addsdilem.2 . . . 4 (𝜑𝐵 No )
31, 2mulscut2 28092 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}) <<s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}))
4 addsdilem.3 . . . 4 (𝜑𝐶 No )
51, 4mulscut2 28092 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}) <<s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}))
6 mulsval2 28070 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})))
71, 2, 6syl2anc 584 . . 3 (𝜑 → (𝐴 ·s 𝐵) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})))
8 mulsval2 28070 . . . 4 ((𝐴 No 𝐶 No ) → (𝐴 ·s 𝐶) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})))
91, 4, 8syl2anc 584 . . 3 (𝜑 → (𝐴 ·s 𝐶) = (({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}) |s ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})))
103, 5, 7, 9addsunif 27965 . 2 (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = (({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}) |s ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)})))
11 unab 4257 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))}
12 rexun 4145 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
13 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))))
14132rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))))
1514rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
16 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
17 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
18 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∈ V
19 oveq1 7362 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2019eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))))
2118, 20ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2221rexbii 3080 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2317, 22bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2423rexbii 3080 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
25 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
2625exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
2716, 24, 263bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
2815, 27bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
29 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))))
30292rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))))
3130rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
32 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
33 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
34 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∈ V
35 oveq1 7362 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
3635eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))))
3734, 36ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
3837rexbii 3080 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
3933, 38bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
4039rexbii 3080 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
41 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
4241exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
4332, 40, 423bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
4431, 43bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
4528, 44orbi12i 914 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))))
4612, 45bitr2i 276 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)))
4746abbii 2800 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
4811, 47eqtri 2756 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
49 unab 4257 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))}
50 rexun 4145 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
51 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
52512rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
5352rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
54 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
55 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
56 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∈ V
57 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
5857eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))))
5956, 58ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6059rexbii 3080 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6155, 60bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6261rexbii 3080 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
63 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
6463exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
6554, 62, 643bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
6653, 65bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))))
67 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
68672rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
6968rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
70 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
71 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
72 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∈ V
73 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7473eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))))
7572, 74ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7675rexbii 3080 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7771, 76bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
7877rexbii 3080 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
79 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
8079exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
8170, 78, 803bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
8269, 81bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))
8366, 82orbi12i 914 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))))
8450, 83bitr2i 276 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡))
8584abbii 2800 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
8649, 85eqtri 2756 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
8748, 86uneq12i 4115 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) = ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)})
88 unab 4257 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))}
89 rexun 4145 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
90 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))))
91902rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))))
9291rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
93 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
94 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
95 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∈ V
96 oveq1 7362 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
9796eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))))
9895, 97ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
9998rexbii 3080 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
10094, 99bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
101100rexbii 3080 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
102 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
103102exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)(𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
10493, 101, 1033bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑡 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
10592, 104bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)))
106 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))))
1071062rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))))
108107rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
109 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
110 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
111 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∈ V
112 oveq1 7362 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) → (𝑡 +s (𝐴 ·s 𝐶)) = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
113112eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) → (𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))))
114111, 113ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ 𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
115114rexbii 3080 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
116110, 115bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
117116rexbii 3080 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
118 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
119118exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)(𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))))
120109, 117, 1193bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑡 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ∧ 𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
121108, 120bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))
122105, 121orbi12i 914 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))}𝑎 = (𝑡 +s (𝐴 ·s 𝐶))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))))
12389, 122bitr2i 276 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶)))
124123abbii 2800 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶)) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶)))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
12588, 124eqtri 2756 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))}
126 unab 4257 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))}
127 rexun 4145 . . . . . . 7 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
128 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ↔ 𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
1291282rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
130129rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
131 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
132 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
133 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∈ V
134 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
135134eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))))
136133, 135ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
137136rexbii 3080 . . . . . . . . . . . 12 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
138132, 137bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
139138rexbii 3080 . . . . . . . . . 10 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
140 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
141140exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
142131, 139, 1413bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
143130, 142bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))))
144 eqeq1 2737 . . . . . . . . . . 11 (𝑏 = 𝑡 → (𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ↔ 𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
1451442rexbidv 3198 . . . . . . . . . 10 (𝑏 = 𝑡 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
146145rexab 3650 . . . . . . . . 9 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
147 rexcom4 3260 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
148 rexcom4 3260 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
149 ovex 7388 . . . . . . . . . . . . . 14 (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∈ V
150 oveq2 7363 . . . . . . . . . . . . . . 15 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) → ((𝐴 ·s 𝐵) +s 𝑡) = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
151150eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) → (𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))))
152149, 151ceqsexv 3487 . . . . . . . . . . . . 13 (∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ 𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
153152rexbii 3080 . . . . . . . . . . . 12 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
154148, 153bitr3i 277 . . . . . . . . . . 11 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
155154rexbii 3080 . . . . . . . . . 10 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
156 r19.41vv 3203 . . . . . . . . . . 11 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
157156exbii 1849 . . . . . . . . . 10 (∃𝑡𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)))
158147, 155, 1573bitr3ri 302 . . . . . . . . 9 (∃𝑡(∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
159146, 158bitri 275 . . . . . . . 8 (∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))
160143, 159orbi12i 914 . . . . . . 7 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))}𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))))
161127, 160bitr2i 276 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡))
162161abbii 2800 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))))} = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
163126, 162eqtri 2756 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}) = {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}
164125, 163uneq12i 4115 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))})) = ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)})
16587, 164oveq12i 7367 . 2 ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))) = (({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}) |s ({𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑏 = (((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑏 = (((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿))})𝑎 = (𝑡 +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿))})𝑎 = ((𝐴 ·s 𝐵) +s 𝑡)}))
16610, 165eqtr4di 2786 1 (𝜑 → ((𝐴 ·s 𝐵) +s (𝐴 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝐿 ·s 𝑧𝐿)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝑅 ·s 𝑧𝑅)))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)𝑎 = ((((𝑥𝐿 ·s 𝐵) +s (𝐴 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) +s (𝐴 ·s 𝐶))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)𝑎 = ((((𝑥𝑅 ·s 𝐵) +s (𝐴 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) +s (𝐴 ·s 𝐶))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝐿 ·s 𝐶) +s (𝐴 ·s 𝑧𝑅)) -s (𝑥𝐿 ·s 𝑧𝑅)))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = ((𝐴 ·s 𝐵) +s (((𝑥𝑅 ·s 𝐶) +s (𝐴 ·s 𝑧𝐿)) -s (𝑥𝑅 ·s 𝑧𝐿)))}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wrex 3057  cun 3896  cfv 6489  (class class class)co 7355   No csur 27598   |s cscut 27742   L cleft 27806   R cright 27807   +s cadds 27922   -s csubs 27982   ·s cmuls 28065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27601  df-slt 27602  df-bday 27603  df-sle 27704  df-sslt 27741  df-scut 27743  df-0s 27788  df-made 27808  df-old 27809  df-left 27811  df-right 27812  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27983  df-subs 27984  df-muls 28066
This theorem is referenced by:  addsdi  28114
  Copyright terms: Public domain W3C validator