Step | Hyp | Ref
| Expression |
1 | | lltropt 27296 |
. . . 4
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
3 | | mulsasslem.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ No
) |
4 | | mulsasslem.3 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ No
) |
5 | 3, 4 | mulscut2 27518 |
. . 3
⊢ (𝜑 → ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})
<<s ({𝑏 ∣
∃𝑦𝐿
∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})) |
6 | | mulsasslem.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ No
) |
7 | | lrcut 27326 |
. . . . 5
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
9 | 8 | eqcomd 2738 |
. . 3
⊢ (𝜑 → 𝐴 = (( L ‘𝐴) |s ( R ‘𝐴))) |
10 | | mulsval2 27496 |
. . . 4
⊢ ((𝐵 ∈
No ∧ 𝐶 ∈
No ) → (𝐵 ·s 𝐶) = (({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})
|s ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}))) |
11 | 3, 4, 10 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐵 ·s 𝐶) = (({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})
|s ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}))) |
12 | 2, 5, 9, 11 | mulsunif 27534 |
. 2
⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))})
|s ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))}))) |
13 | | unab 4295 |
. . . . 5
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
= {𝑎 ∣ (∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))} |
14 | | r19.43 3122 |
. . . . . . 7
⊢
(∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))) |
15 | | rexun 4187 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ (∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)))) |
16 | | eqeq1 2736 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑡 → (𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
↔ 𝑡 = (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) |
17 | 16 | 2rexbidv 3219 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑡 → (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿)))) |
18 | 17 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
19 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
20 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
21 | | ovex 7427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)) ∈
V |
22 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (𝐴
·s 𝑡) =
(𝐴 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) |
23 | 22 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿))))) |
24 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (𝑥𝐿 ·s
𝑡) = (𝑥𝐿 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) |
25 | 23, 24 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)) =
(((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
-s (𝑥𝐿 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿))))) |
26 | 25 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿)))))) |
27 | 21, 26 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
28 | 27 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
29 | 20, 28 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
30 | 29 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
31 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ (∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
32 | 31 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
33 | 19, 30, 32 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
34 | 18, 33 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
35 | | eqeq1 2736 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑡 → (𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
↔ 𝑡 = (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) |
36 | 35 | 2rexbidv 3219 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑡 → (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))) |
37 | 36 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
38 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
39 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
40 | | ovex 7427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)) ∈
V |
41 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (𝐴
·s 𝑡) =
(𝐴 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) |
42 | 41 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅))))) |
43 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (𝑥𝐿 ·s
𝑡) = (𝑥𝐿 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) |
44 | 42, 43 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)) =
(((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))
-s (𝑥𝐿 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅))))) |
45 | 44 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))) |
46 | 40, 45 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
47 | 46 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
48 | 39, 47 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
49 | 48 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
50 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ (∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
51 | 50 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
52 | 38, 49, 51 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
53 | 37, 52 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
54 | 34, 53 | orbi12i 913 |
. . . . . . . . 9
⊢
((∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)))
↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))) |
55 | 15, 54 | bitr2i 275 |
. . . . . . . 8
⊢
((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ ∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))) |
56 | 55 | rexbii 3094 |
. . . . . . 7
⊢
(∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))) |
57 | 14, 56 | bitr3i 276 |
. . . . . 6
⊢
((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))) |
58 | 57 | abbii 2802 |
. . . . 5
⊢ {𝑎 ∣ (∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))}
= {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))} |
59 | 13, 58 | eqtri 2760 |
. . . 4
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
= {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))} |
60 | | unab 4295 |
. . . . 5
⊢ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
= {𝑎 ∣ (∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))} |
61 | | r19.43 3122 |
. . . . . . 7
⊢
(∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))) |
62 | | rexun 4187 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ (∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)))) |
63 | | eqeq1 2736 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑡 → (𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
↔ 𝑡 = (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) |
64 | 63 | 2rexbidv 3219 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑡 → (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅)))) |
65 | 64 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
66 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
67 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
68 | | ovex 7427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)) ∈
V |
69 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (𝐴
·s 𝑡) =
(𝐴 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) |
70 | 69 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅))))) |
71 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (𝑥𝑅 ·s
𝑡) = (𝑥𝑅 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) |
72 | 70, 71 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)) =
(((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
-s (𝑥𝑅 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅))))) |
73 | 72 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅)))))) |
74 | 68, 73 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
75 | 74 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
76 | 67, 75 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
77 | 76 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
78 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ (∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
79 | 78 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
80 | 66, 77, 79 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
81 | 65, 80 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
82 | | eqeq1 2736 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑡 → (𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
↔ 𝑡 = (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) |
83 | 82 | 2rexbidv 3219 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑡 → (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))) |
84 | 83 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
85 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
86 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
87 | | ovex 7427 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)) ∈
V |
88 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (𝐴
·s 𝑡) =
(𝐴 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) |
89 | 88 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿))))) |
90 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (𝑥𝑅 ·s
𝑡) = (𝑥𝑅 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) |
91 | 89, 90 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)) =
(((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))
-s (𝑥𝑅 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿))))) |
92 | 91 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))) |
93 | 87, 92 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
94 | 93 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
95 | 86, 94 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
96 | 95 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
97 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ (∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
98 | 97 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
99 | 85, 96, 98 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
100 | 84, 99 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
101 | 81, 100 | orbi12i 913 |
. . . . . . . . 9
⊢
((∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)))
↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))) |
102 | 62, 101 | bitr2i 275 |
. . . . . . . 8
⊢
((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ ∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))) |
103 | 102 | rexbii 3094 |
. . . . . . 7
⊢
(∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))) |
104 | 61, 103 | bitr3i 276 |
. . . . . 6
⊢
((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))) |
105 | 104 | abbii 2802 |
. . . . 5
⊢ {𝑎 ∣ (∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))}
= {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))} |
106 | 60, 105 | eqtri 2760 |
. . . 4
⊢ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
= {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))} |
107 | 59, 106 | uneq12i 4158 |
. . 3
⊢ (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
∪ ({𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))}) |
108 | | unab 4295 |
. . . . 5
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
= {𝑎 ∣ (∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))} |
109 | | r19.43 3122 |
. . . . . . 7
⊢
(∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))) |
110 | | rexun 4187 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ (∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)))) |
111 | 64 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
112 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
113 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
114 | 69 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅))))) |
115 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (𝑥𝐿 ·s
𝑡) = (𝑥𝐿 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) |
116 | 114, 115 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)) =
(((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
-s (𝑥𝐿 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅))))) |
117 | 116 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
→ (𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅)))))) |
118 | 68, 117 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
119 | 118 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
120 | 113, 119 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
121 | 120 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
122 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ (∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
123 | 122 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
124 | 112, 121,
123 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
125 | 111, 124 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))) |
126 | 83 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
127 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
128 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
129 | 88 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿))))) |
130 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (𝑥𝐿 ·s
𝑡) = (𝑥𝐿 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) |
131 | 129, 130 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)) =
(((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))
-s (𝑥𝐿 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿))))) |
132 | 131 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
→ (𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))) |
133 | 87, 132 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
134 | 133 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
135 | 128, 134 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
136 | 135 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
137 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ (∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
138 | 137 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡)))) |
139 | 127, 136,
138 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝐿
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝐿 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
140 | 126, 139 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))) |
141 | 125, 140 | orbi12i 913 |
. . . . . . . . 9
⊢
((∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡)))
↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))) |
142 | 110, 141 | bitr2i 275 |
. . . . . . . 8
⊢
((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ ∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))) |
143 | 142 | rexbii 3094 |
. . . . . . 7
⊢
(∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))) |
144 | 109, 143 | bitr3i 276 |
. . . . . 6
⊢
((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))
↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))) |
145 | 144 | abbii 2802 |
. . . . 5
⊢ {𝑎 ∣ (∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))
∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿)))))}
= {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))} |
146 | 108, 145 | eqtri 2760 |
. . . 4
⊢ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
= {𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))} |
147 | | unab 4295 |
. . . . 5
⊢ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
= {𝑎 ∣ (∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))} |
148 | | r19.43 3122 |
. . . . . . 7
⊢
(∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))) |
149 | | rexun 4187 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ (∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)))) |
150 | 17 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
151 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
152 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
153 | 22 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿))))) |
154 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (𝑥𝑅 ·s
𝑡) = (𝑥𝑅 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) |
155 | 153, 154 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)) =
(((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
-s (𝑥𝑅 ·s
(((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿))))) |
156 | 155 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
→ (𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿)))))) |
157 | 21, 156 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
158 | 157 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
159 | 152, 158 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
160 | 159 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
161 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ (∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
162 | 161 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
163 | 151, 160,
162 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
164 | 150, 163 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))) |
165 | 36 | rexab 3687 |
. . . . . . . . . . 11
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
166 | | rexcom4 3285 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
167 | | rexcom4 3285 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
168 | 41 | oveq2d 7410 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅))))) |
169 | | oveq2 7402 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (𝑥𝑅 ·s
𝑡) = (𝑥𝑅 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) |
170 | 168, 169 | oveq12d 7412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)) =
(((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))
-s (𝑥𝑅 ·s
(((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅))))) |
171 | 170 | eqeq2d 2743 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
→ (𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))) |
172 | 40, 171 | ceqsexv 3523 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
173 | 172 | rexbii 3094 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
174 | 167, 173 | bitr3i 276 |
. . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
175 | 174 | rexbii 3094 |
. . . . . . . . . . . 12
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
176 | | r19.41vv 3224 |
. . . . . . . . . . . . 13
⊢
(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ (∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
177 | 176 | exbii 1850 |
. . . . . . . . . . . 12
⊢
(∃𝑡∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡)))) |
178 | 166, 175,
177 | 3bitr3ri 301 |
. . . . . . . . . . 11
⊢
(∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))
∧ 𝑎 = (((𝑥𝑅
·s (𝐵
·s 𝐶))
+s (𝐴
·s 𝑡))
-s (𝑥𝑅 ·s
𝑡))) ↔ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
179 | 165, 178 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))) |
180 | 164, 179 | orbi12i 913 |
. . . . . . . . 9
⊢
((∃𝑡 ∈
{𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))
∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡)))
↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))) |
181 | 149, 180 | bitr2i 275 |
. . . . . . . 8
⊢
((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ ∃𝑡 ∈
({𝑏 ∣ ∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))) |
182 | 181 | rexbii 3094 |
. . . . . . 7
⊢
(∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))) |
183 | 148, 182 | bitr3i 276 |
. . . . . 6
⊢
((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))
↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))) |
184 | 183 | abbii 2802 |
. . . . 5
⊢ {𝑎 ∣ (∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))
∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅)))))}
= {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))} |
185 | 147, 184 | eqtri 2760 |
. . . 4
⊢ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
= {𝑎 ∣ ∃𝑥𝑅 ∈ ( R
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))} |
186 | 146, 185 | uneq12i 4158 |
. . 3
⊢ (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
∪ ({𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))}) |
187 | 107, 186 | oveq12i 7406 |
. 2
⊢ ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝐿 ∈ ( L
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
∪ ({𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
∪ ({𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))}))) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))})
|s ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿
·s 𝑡))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))}
∪ {𝑏 ∣
∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅
·s 𝑡))})) |
188 | 12, 187 | eqtr4di 2790 |
1
⊢ (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})
∪ ({𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L
‘𝐴)∃𝑦𝐿 ∈ ( L
‘𝐵)∃𝑧𝑅 ∈ ( R
‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝐿
·s 𝑧𝑅)))) -s (𝑥𝐿
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝐿 ·s
𝑧𝑅))))}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝑅
·s 𝑧𝐿)))) -s (𝑥𝐿
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝑅 ·s
𝑧𝐿))))})
∪ ({𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝐿
·s 𝐶)
+s (𝐵
·s 𝑧𝐿)) -s (𝑦𝐿
·s 𝑧𝐿)))) -s (𝑥𝑅
·s (((𝑦𝐿 ·s
𝐶) +s (𝐵 ·s 𝑧𝐿))
-s (𝑦𝐿 ·s
𝑧𝐿))))}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s
(𝐵 ·s
𝐶)) +s (𝐴 ·s (((𝑦𝑅
·s 𝐶)
+s (𝐵
·s 𝑧𝑅)) -s (𝑦𝑅
·s 𝑧𝑅)))) -s (𝑥𝑅
·s (((𝑦𝑅 ·s
𝐶) +s (𝐵 ·s 𝑧𝑅))
-s (𝑦𝑅 ·s
𝑧𝑅))))})))) |