MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsasslem2 Structured version   Visualization version   GIF version

Theorem mulsasslem2 28205
Description: Lemma for mulsass 28207. Expand the right hand side of the formula. (Contributed by Scott Fenton, 9-Mar-2025.)
Hypotheses
Ref Expression
mulsasslem.1 (𝜑𝐴 No )
mulsasslem.2 (𝜑𝐵 No )
mulsasslem.3 (𝜑𝐶 No )
Assertion
Ref Expression
mulsasslem2 (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))))
Distinct variable groups:   𝐴,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅   𝐵,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅   𝐶,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅
Allowed substitution hints:   𝜑(𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅,𝑧𝐿,𝑧𝑅)

Proof of Theorem mulsasslem2
Dummy variables 𝑏 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lltropt 27926 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
21a1i 11 . . 3 (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴))
3 mulsasslem.2 . . . 4 (𝜑𝐵 No )
4 mulsasslem.3 . . . 4 (𝜑𝐶 No )
53, 4mulscut2 28174 . . 3 (𝜑 → ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}) <<s ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}))
6 mulsasslem.1 . . . . 5 (𝜑𝐴 No )
7 lrcut 27956 . . . . 5 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
86, 7syl 17 . . . 4 (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
98eqcomd 2741 . . 3 (𝜑𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)))
10 mulsval2 28152 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 ·s 𝐶) = (({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}) |s ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})))
113, 4, 10syl2anc 584 . . 3 (𝜑 → (𝐵 ·s 𝐶) = (({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}) |s ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})))
122, 5, 9, 11mulsunif 28191 . 2 (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}) |s ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))})))
13 unab 4314 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))}
14 r19.43 3120 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
15 rexun 4206 . . . . . . . . 9 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
16 eqeq1 2739 . . . . . . . . . . . . 13 (𝑏 = 𝑡 → (𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ↔ 𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))
17162rexbidv 3220 . . . . . . . . . . . 12 (𝑏 = 𝑡 → (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))
1817rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
19 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
20 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
21 ovex 7464 . . . . . . . . . . . . . . . 16 (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∈ V
22 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (𝐴 ·s 𝑡) = (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))
2322oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
24 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (𝑥𝐿 ·s 𝑡) = (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))
2523, 24oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
2625eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))))
2721, 26ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
2827rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
2920, 28bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
3029rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
31 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
3231exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
3319, 30, 323bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
3418, 33bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
35 eqeq1 2739 . . . . . . . . . . . . 13 (𝑏 = 𝑡 → (𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ↔ 𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))
36352rexbidv 3220 . . . . . . . . . . . 12 (𝑏 = 𝑡 → (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))
3736rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
38 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
39 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
40 ovex 7464 . . . . . . . . . . . . . . . 16 (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∈ V
41 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (𝐴 ·s 𝑡) = (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))
4241oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
43 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (𝑥𝐿 ·s 𝑡) = (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))
4442, 43oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
4544eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
4640, 45ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
4746rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
4839, 47bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
4948rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
50 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
5150exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
5238, 49, 513bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
5337, 52bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
5434, 53orbi12i 914 . . . . . . . . 9 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
5515, 54bitr2i 276 . . . . . . . 8 ((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)))
5655rexbii 3092 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)))
5714, 56bitr3i 277 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)))
5857abbii 2807 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))}
5913, 58eqtri 2763 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))}
60 unab 4314 . . . . 5 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) = {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))}
61 r19.43 3120 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
62 rexun 4206 . . . . . . . . 9 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
63 eqeq1 2739 . . . . . . . . . . . . 13 (𝑏 = 𝑡 → (𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ↔ 𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))
64632rexbidv 3220 . . . . . . . . . . . 12 (𝑏 = 𝑡 → (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))
6564rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
66 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
67 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
68 ovex 7464 . . . . . . . . . . . . . . . 16 (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∈ V
69 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (𝐴 ·s 𝑡) = (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))
7069oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
71 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (𝑥𝑅 ·s 𝑡) = (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))
7270, 71oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
7372eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))))
7468, 73ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
7574rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
7667, 75bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
7776rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
78 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
7978exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
8066, 77, 793bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
8165, 80bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
82 eqeq1 2739 . . . . . . . . . . . . 13 (𝑏 = 𝑡 → (𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ↔ 𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))
83822rexbidv 3220 . . . . . . . . . . . 12 (𝑏 = 𝑡 → (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))
8483rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
85 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
86 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
87 ovex 7464 . . . . . . . . . . . . . . . 16 (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∈ V
88 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (𝐴 ·s 𝑡) = (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))
8988oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
90 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (𝑥𝑅 ·s 𝑡) = (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))
9189, 90oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
9291eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
9387, 92ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
9493rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
9586, 94bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
9695rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
97 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
9897exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
9985, 96, 983bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
10084, 99bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
10181, 100orbi12i 914 . . . . . . . . 9 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
10262, 101bitr2i 276 . . . . . . . 8 ((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)))
103102rexbii 3092 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)))
10461, 103bitr3i 277 . . . . . 6 ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)))
105104abbii 2807 . . . . 5 {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}
10660, 105eqtri 2763 . . . 4 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}
10759, 106uneq12i 4176 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))})
108 unab 4314 . . . . 5 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) = {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))}
109 r19.43 3120 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
110 rexun 4206 . . . . . . . . 9 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
11164rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
112 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
113 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
11469oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
115 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (𝑥𝐿 ·s 𝑡) = (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))
116114, 115oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
117116eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) → (𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))))
11868, 117ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
119118rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
120113, 119bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
121120rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
122 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
123122exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
124112, 121, 1233bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
125111, 124bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))))
12683rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
127 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
128 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
12988oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
130 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (𝑥𝐿 ·s 𝑡) = (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))
131129, 130oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
132131eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) → (𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
13387, 132ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
134133rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
135128, 134bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
136135rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
137 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
138137exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))))
139127, 136, 1383bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
140126, 139bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))
141125, 140orbi12i 914 . . . . . . . . 9 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))}𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
142110, 141bitr2i 276 . . . . . . . 8 ((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)))
143142rexbii 3092 . . . . . . 7 (∃𝑥𝐿 ∈ ( L ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)))
144109, 143bitr3i 277 . . . . . 6 ((∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡)))
145144abbii 2807 . . . . 5 {𝑎 ∣ (∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) ∨ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))}
146108, 145eqtri 2763 . . . 4 ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))}
147 unab 4314 . . . . 5 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) = {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))}
148 r19.43 3120 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
149 rexun 4206 . . . . . . . . 9 (∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
15017rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
151 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
152 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
15322oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
154 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (𝑥𝑅 ·s 𝑡) = (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))
155153, 154oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
156155eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) → (𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))))
15721, 156ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
158157rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝐿 ∈ ( L ‘𝐶)∃𝑡(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
159152, 158bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
160159rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑡𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
161 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
162161exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)(𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
163151, 160, 1623bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑡 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
164150, 163bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))))
16536rexab 3703 . . . . . . . . . . 11 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
166 rexcom4 3286 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
167 rexcom4 3286 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
16841oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) = ((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
169 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (𝑥𝑅 ·s 𝑡) = (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))
170168, 169oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
171170eqeq2d 2746 . . . . . . . . . . . . . . . 16 (𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) → (𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
17240, 171ceqsexv 3530 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
173172rexbii 3092 . . . . . . . . . . . . . 14 (∃𝑧𝑅 ∈ ( R ‘𝐶)∃𝑡(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
174167, 173bitr3i 277 . . . . . . . . . . . . 13 (∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
175174rexbii 3092 . . . . . . . . . . . 12 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑡𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
176 r19.41vv 3225 . . . . . . . . . . . . 13 (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ (∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
177176exbii 1845 . . . . . . . . . . . 12 (∃𝑡𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)(𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))))
178166, 175, 1773bitr3ri 302 . . . . . . . . . . 11 (∃𝑡(∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑡 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)) ∧ 𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
179165, 178bitri 275 . . . . . . . . . 10 (∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ↔ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))
180164, 179orbi12i 914 . . . . . . . . 9 ((∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)) ∨ ∃𝑡 ∈ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))}𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))) ↔ (∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
181149, 180bitr2i 276 . . . . . . . 8 ((∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ ∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)))
182181rexbii 3092 . . . . . . 7 (∃𝑥𝑅 ∈ ( R ‘𝐴)(∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)))
183148, 182bitr3i 277 . . . . . 6 ((∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡)))
184183abbii 2807 . . . . 5 {𝑎 ∣ (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) ∨ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}
185147, 184eqtri 2763 . . . 4 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}
186146, 185uneq12i 4176 . . 3 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))})
187107, 186oveq12i 7443 . 2 ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}) |s ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))})𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝐿 ·s 𝑡))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑡 ∈ ({𝑏 ∣ ∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑏 = (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))} ∪ {𝑏 ∣ ∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑏 = (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))})𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s 𝑡)) -s (𝑥𝑅 ·s 𝑡))}))
18812, 187eqtr4di 2793 1 (𝜑 → (𝐴 ·s (𝐵 ·s 𝐶)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝐿 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ ( L ‘𝐵)∃𝑧𝐿 ∈ ( L ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝐶) +s (𝐵 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ ( R ‘𝐵)∃𝑧𝑅 ∈ ( R ‘𝐶)𝑎 = (((𝑥𝑅 ·s (𝐵 ·s 𝐶)) +s (𝐴 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝐶) +s (𝐵 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wrex 3068  cun 3961   class class class wbr 5148  cfv 6563  (class class class)co 7431   No csur 27699   <<s csslt 27840   |s cscut 27842   L cleft 27899   R cright 27900   +s cadds 28007   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148
This theorem is referenced by:  mulsass  28207
  Copyright terms: Public domain W3C validator