MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpass Structured version   Visualization version   GIF version

Theorem genpass 10166
Description: Associativity of an operation on reals. (Contributed by NM, 18-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpass.4 dom 𝐹 = (P × P)
genpass.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpass.6 ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))
Assertion
Ref Expression
genpass ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑤,𝑣)   𝐹(𝑤,𝑣)

Proof of Theorem genpass
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10157 . . . . . . . . 9 ((𝐵P𝐶P) → (𝑡 ∈ (𝐵𝐹𝐶) ↔ ∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺)))
433adant1 1121 . . . . . . . 8 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (𝐵𝐹𝐶) ↔ ∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺)))
54anbi1d 623 . . . . . . 7 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
65exbidv 1964 . . . . . 6 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
7 df-rex 3096 . . . . . 6 (∃𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)))
8 ovex 6954 . . . . . . . . . . . . 13 (𝑔𝐺) ∈ V
98isseti 3411 . . . . . . . . . . . 12 𝑡 𝑡 = (𝑔𝐺)
109biantrur 526 . . . . . . . . . . 11 (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
11 19.41v 1992 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1210, 11bitr4i 270 . . . . . . . . . 10 (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1312rexbii 3224 . . . . . . . . 9 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝐶𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
14 rexcom4 3427 . . . . . . . . 9 (∃𝐶𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1513, 14bitri 267 . . . . . . . 8 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1615rexbii 3224 . . . . . . 7 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔𝐵𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
17 rexcom4 3427 . . . . . . 7 (∃𝑔𝐵𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
18 oveq2 6930 . . . . . . . . . . . . . . 15 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
19 genpass.6 . . . . . . . . . . . . . . 15 ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))
2018, 19syl6eqr 2832 . . . . . . . . . . . . . 14 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = ((𝑓𝐺𝑔)𝐺))
2120eqeq2d 2788 . . . . . . . . . . . . 13 (𝑡 = (𝑔𝐺) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
2221pm5.32i 570 . . . . . . . . . . . 12 ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
2322rexbii 3224 . . . . . . . . . . 11 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
24 r19.41v 3275 . . . . . . . . . . 11 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2523, 24bitr3i 269 . . . . . . . . . 10 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2625rexbii 3224 . . . . . . . . 9 (∃𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑔𝐵 (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
27 r19.41v 3275 . . . . . . . . 9 (∃𝑔𝐵 (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2826, 27bitri 267 . . . . . . . 8 (∃𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2928exbii 1892 . . . . . . 7 (∃𝑡𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
3016, 17, 293bitri 289 . . . . . 6 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
316, 7, 303bitr4g 306 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
3231rexbidv 3237 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
33 genpass.5 . . . . . . 7 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
3433caovcl 7105 . . . . . 6 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
351, 2genpelv 10157 . . . . . 6 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
3634, 35sylan2 586 . . . . 5 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
37363impb 1104 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
3833caovcl 7105 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
391, 2genpelv 10157 . . . . . 6 (((𝐴𝐹𝐵) ∈ P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺)))
4038, 39stoic3 1820 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺)))
411, 2genpelv 10157 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑡 ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔)))
42413adant3 1123 . . . . . . . 8 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔)))
4342anbi1d 623 . . . . . . 7 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺))))
4443exbidv 1964 . . . . . 6 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺))))
45 df-rex 3096 . . . . . 6 (∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝑡(𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
46 19.41v 1992 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
47 oveq1 6929 . . . . . . . . . . . . . . 15 (𝑡 = (𝑓𝐺𝑔) → (𝑡𝐺) = ((𝑓𝐺𝑔)𝐺))
4847eqeq2d 2788 . . . . . . . . . . . . . 14 (𝑡 = (𝑓𝐺𝑔) → (𝑥 = (𝑡𝐺) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
4948rexbidv 3237 . . . . . . . . . . . . 13 (𝑡 = (𝑓𝐺𝑔) → (∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5049pm5.32i 570 . . . . . . . . . . . 12 ((𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5150exbii 1892 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
52 ovex 6954 . . . . . . . . . . . . 13 (𝑓𝐺𝑔) ∈ V
5352isseti 3411 . . . . . . . . . . . 12 𝑡 𝑡 = (𝑓𝐺𝑔)
5453biantrur 526 . . . . . . . . . . 11 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5546, 51, 543bitr4ri 296 . . . . . . . . . 10 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5655rexbii 3224 . . . . . . . . 9 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔𝐵𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
57 rexcom4 3427 . . . . . . . . 9 (∃𝑔𝐵𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5856, 57bitri 267 . . . . . . . 8 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5958rexbii 3224 . . . . . . 7 (∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑓𝐴𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
60 rexcom4 3427 . . . . . . 7 (∃𝑓𝐴𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
61 r19.41vv 3277 . . . . . . . 8 (∃𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6261exbii 1892 . . . . . . 7 (∃𝑡𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6359, 60, 623bitri 289 . . . . . 6 (∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6444, 45, 633bitr4g 306 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
6540, 64bitrd 271 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
6632, 37, 653bitr4rd 304 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ 𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶))))
6766eqrdv 2776 . 2 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
68 genpass.4 . . 3 dom 𝐹 = (P × P)
69 0npr 10149 . . 3 ¬ ∅ ∈ P
7068, 69ndmovass 7099 . 2 (¬ (𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
7167, 70pm2.61i 177 1 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  {cab 2763  wrex 3091   × cxp 5353  dom cdm 5355  (class class class)co 6922  cmpt2 6924  Qcnq 10009  Pcnp 10016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-ni 10029  df-nq 10069  df-np 10138
This theorem is referenced by:  addasspr  10179  mulasspr  10181
  Copyright terms: Public domain W3C validator