MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpass Structured version   Visualization version   GIF version

Theorem genpass 10696
Description: Associativity of an operation on reals. (Contributed by NM, 18-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpass.4 dom 𝐹 = (P × P)
genpass.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpass.6 ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))
Assertion
Ref Expression
genpass ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧,
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑤,𝑣)   𝐹(𝑤,𝑣)

Proof of Theorem genpass
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10687 . . . . . . . . 9 ((𝐵P𝐶P) → (𝑡 ∈ (𝐵𝐹𝐶) ↔ ∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺)))
433adant1 1128 . . . . . . . 8 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (𝐵𝐹𝐶) ↔ ∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺)))
54anbi1d 629 . . . . . . 7 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
65exbidv 1925 . . . . . 6 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡))))
7 df-rex 3069 . . . . . 6 (∃𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑡(𝑡 ∈ (𝐵𝐹𝐶) ∧ 𝑥 = (𝑓𝐺𝑡)))
8 ovex 7288 . . . . . . . . . . . . 13 (𝑔𝐺) ∈ V
98isseti 3437 . . . . . . . . . . . 12 𝑡 𝑡 = (𝑔𝐺)
109biantrur 530 . . . . . . . . . . 11 (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
11 19.41v 1954 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1210, 11bitr4i 277 . . . . . . . . . 10 (𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1312rexbii 3177 . . . . . . . . 9 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝐶𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
14 rexcom4 3179 . . . . . . . . 9 (∃𝐶𝑡(𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1513, 14bitri 274 . . . . . . . 8 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
1615rexbii 3177 . . . . . . 7 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔𝐵𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
17 rexcom4 3179 . . . . . . 7 (∃𝑔𝐵𝑡𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
18 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = (𝑓𝐺(𝑔𝐺)))
19 genpass.6 . . . . . . . . . . . . . . 15 ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺))
2018, 19eqtr4di 2797 . . . . . . . . . . . . . 14 (𝑡 = (𝑔𝐺) → (𝑓𝐺𝑡) = ((𝑓𝐺𝑔)𝐺))
2120eqeq2d 2749 . . . . . . . . . . . . 13 (𝑡 = (𝑔𝐺) → (𝑥 = (𝑓𝐺𝑡) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
2221pm5.32i 574 . . . . . . . . . . . 12 ((𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
2322rexbii 3177 . . . . . . . . . . 11 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ ∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
24 r19.41v 3273 . . . . . . . . . . 11 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2523, 24bitr3i 276 . . . . . . . . . 10 (∃𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2625rexbii 3177 . . . . . . . . 9 (∃𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑔𝐵 (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
27 r19.41v 3273 . . . . . . . . 9 (∃𝑔𝐵 (∃𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2826, 27bitri 274 . . . . . . . 8 (∃𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
2928exbii 1851 . . . . . . 7 (∃𝑡𝑔𝐵𝐶 (𝑡 = (𝑔𝐺) ∧ 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
3016, 17, 293bitri 296 . . . . . 6 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑔𝐵𝐶 𝑡 = (𝑔𝐺) ∧ 𝑥 = (𝑓𝐺𝑡)))
316, 7, 303bitr4g 313 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
3231rexbidv 3225 . . . 4 ((𝐴P𝐵P𝐶P) → (∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
33 genpass.5 . . . . . . 7 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
3433caovcl 7444 . . . . . 6 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
351, 2genpelv 10687 . . . . . 6 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
3634, 35sylan2 592 . . . . 5 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
37363impb 1113 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶)) ↔ ∃𝑓𝐴𝑡 ∈ (𝐵𝐹𝐶)𝑥 = (𝑓𝐺𝑡)))
3833caovcl 7444 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
391, 2genpelv 10687 . . . . . 6 (((𝐴𝐹𝐵) ∈ P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺)))
4038, 39stoic3 1780 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺)))
411, 2genpelv 10687 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑡 ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔)))
42413adant3 1130 . . . . . . . 8 ((𝐴P𝐵P𝐶P) → (𝑡 ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔)))
4342anbi1d 629 . . . . . . 7 ((𝐴P𝐵P𝐶P) → ((𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺))))
4443exbidv 1925 . . . . . 6 ((𝐴P𝐵P𝐶P) → (∃𝑡(𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺))))
45 df-rex 3069 . . . . . 6 (∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝑡(𝑡 ∈ (𝐴𝐹𝐵) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
46 19.41v 1954 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
47 oveq1 7262 . . . . . . . . . . . . . . 15 (𝑡 = (𝑓𝐺𝑔) → (𝑡𝐺) = ((𝑓𝐺𝑔)𝐺))
4847eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑡 = (𝑓𝐺𝑔) → (𝑥 = (𝑡𝐺) ↔ 𝑥 = ((𝑓𝐺𝑔)𝐺)))
4948rexbidv 3225 . . . . . . . . . . . . 13 (𝑡 = (𝑓𝐺𝑔) → (∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5049pm5.32i 574 . . . . . . . . . . . 12 ((𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5150exbii 1851 . . . . . . . . . . 11 (∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
52 ovex 7288 . . . . . . . . . . . . 13 (𝑓𝐺𝑔) ∈ V
5352isseti 3437 . . . . . . . . . . . 12 𝑡 𝑡 = (𝑓𝐺𝑔)
5453biantrur 530 . . . . . . . . . . 11 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ (∃𝑡 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
5546, 51, 543bitr4ri 303 . . . . . . . . . 10 (∃𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5655rexbii 3177 . . . . . . . . 9 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑔𝐵𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
57 rexcom4 3179 . . . . . . . . 9 (∃𝑔𝐵𝑡(𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5856, 57bitri 274 . . . . . . . 8 (∃𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
5958rexbii 3177 . . . . . . 7 (∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑓𝐴𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
60 rexcom4 3179 . . . . . . 7 (∃𝑓𝐴𝑡𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
61 r19.41vv 3275 . . . . . . . 8 (∃𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ (∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6261exbii 1851 . . . . . . 7 (∃𝑡𝑓𝐴𝑔𝐵 (𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6359, 60, 623bitri 296 . . . . . 6 (∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺) ↔ ∃𝑡(∃𝑓𝐴𝑔𝐵 𝑡 = (𝑓𝐺𝑔) ∧ ∃𝐶 𝑥 = (𝑡𝐺)))
6444, 45, 633bitr4g 313 . . . . 5 ((𝐴P𝐵P𝐶P) → (∃𝑡 ∈ (𝐴𝐹𝐵)∃𝐶 𝑥 = (𝑡𝐺) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
6540, 64bitrd 278 . . . 4 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ ∃𝑓𝐴𝑔𝐵𝐶 𝑥 = ((𝑓𝐺𝑔)𝐺)))
6632, 37, 653bitr4rd 311 . . 3 ((𝐴P𝐵P𝐶P) → (𝑥 ∈ ((𝐴𝐹𝐵)𝐹𝐶) ↔ 𝑥 ∈ (𝐴𝐹(𝐵𝐹𝐶))))
6766eqrdv 2736 . 2 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
68 genpass.4 . . 3 dom 𝐹 = (P × P)
69 0npr 10679 . . 3 ¬ ∅ ∈ P
7068, 69ndmovass 7438 . 2 (¬ (𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
7167, 70pm2.61i 182 1 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064   × cxp 5578  dom cdm 5580  (class class class)co 7255  cmpo 7257  Qcnq 10539  Pcnp 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-ni 10559  df-nq 10599  df-np 10668
This theorem is referenced by:  addasspr  10709  mulasspr  10711
  Copyright terms: Public domain W3C validator