Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0 Structured version   Visualization version   GIF version

Theorem satf0 33313
Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation. (Contributed by AV, 14-Sep-2023.)
Assertion
Ref Expression
satf0 (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) ↾ suc ω)
Distinct variable group:   𝑓,𝑖,𝑗,𝑢,𝑣,𝑥,𝑦

Proof of Theorem satf0
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5234 . . 3 ∅ ∈ V
2 satf 33294 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) ↾ suc ω))
31, 1, 2mp2an 688 . 2 (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) ↾ suc ω)
4 peano1 7723 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ ω
54ne0ii 4276 . . . . . . . . . . . . . . . . . 18 ω ≠ ∅
6 map0b 8645 . . . . . . . . . . . . . . . . . 18 (ω ≠ ∅ → (∅ ↑m ω) = ∅)
75, 6ax-mp 5 . . . . . . . . . . . . . . . . 17 (∅ ↑m ω) = ∅
87difeq1i 4057 . . . . . . . . . . . . . . . 16 ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = (∅ ∖ ((2nd𝑢) ∩ (2nd𝑣)))
9 0dif 4340 . . . . . . . . . . . . . . . 16 (∅ ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ∅
108, 9eqtri 2767 . . . . . . . . . . . . . . 15 ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ∅
1110eqeq2i 2752 . . . . . . . . . . . . . 14 (𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝑦 = ∅)
1211anbi2i 622 . . . . . . . . . . . . 13 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
1312rexbii 3179 . . . . . . . . . . . 12 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
14 r19.41v 3275 . . . . . . . . . . . 12 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ↔ (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
1513, 14bitri 274 . . . . . . . . . . 11 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
167rabeqi 3414 . . . . . . . . . . . . . . . 16 {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = {𝑎 ∈ ∅ ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
17 rab0 4321 . . . . . . . . . . . . . . . 16 {𝑎 ∈ ∅ ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = ∅
1816, 17eqtri 2767 . . . . . . . . . . . . . . 15 {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = ∅
1918eqeq2i 2752 . . . . . . . . . . . . . 14 (𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝑦 = ∅)
2019anbi2i 622 . . . . . . . . . . . . 13 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
2120rexbii 3179 . . . . . . . . . . . 12 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
22 r19.41v 3275 . . . . . . . . . . . 12 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅) ↔ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
2321, 22bitri 274 . . . . . . . . . . 11 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
2415, 23orbi12i 911 . . . . . . . . . 10 ((∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)))
2524rexbii 3179 . . . . . . . . 9 (∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)))
26 andir 1005 . . . . . . . . . . 11 (((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅) ↔ ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)))
2726bicomi 223 . . . . . . . . . 10 (((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)) ↔ ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
2827rexbii 3179 . . . . . . . . 9 (∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)) ↔ ∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
29 r19.41v 3275 . . . . . . . . 9 (∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅) ↔ (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
3025, 28, 293bitri 296 . . . . . . . 8 (∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
3130biancomi 462 . . . . . . 7 (∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
3231opabbii 5145 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
3332uneq2i 4098 . . . . 5 (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
3433mpteq2i 5183 . . . 4 (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
357rabeqi 3414 . . . . . . . . . . 11 {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)} = {𝑎 ∈ ∅ ∣ (𝑎𝑖)∅(𝑎𝑗)}
36 rab0 4321 . . . . . . . . . . 11 {𝑎 ∈ ∅ ∣ (𝑎𝑖)∅(𝑎𝑗)} = ∅
3735, 36eqtri 2767 . . . . . . . . . 10 {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)} = ∅
3837eqeq2i 2752 . . . . . . . . 9 (𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)} ↔ 𝑦 = ∅)
3938anbi2i 622 . . . . . . . 8 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
40392rexbii 3180 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
41 r19.41vv 3277 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
4240, 41bitri 274 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
4342biancomi 462 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4443opabbii 5145 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
45 rdgeq12 8228 . . . 4 (((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) → rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) = rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
4634, 44, 45mp2an 688 . . 3 rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) = rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4746reseq1i 5884 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) ↾ suc ω) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) ↾ suc ω)
483, 47eqtri 2767 1 (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) ↾ suc ω)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  cdif 3888  cun 3889  cin 3890  c0 4261  {csn 4566  cop 4572   class class class wbr 5078  {copab 5140  cmpt 5161  cres 5590  suc csuc 6265  cfv 6430  (class class class)co 7268  ωcom 7700  1st c1st 7815  2nd c2nd 7816  reccrdg 8224  m cmap 8589  𝑔cgoe 33274  𝑔cgna 33275  𝑔cgol 33276   Sat csat 33277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-map 8591  df-sat 33284
This theorem is referenced by:  satf0sucom  33314
  Copyright terms: Public domain W3C validator