Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satf0 Structured version   Visualization version   GIF version

Theorem satf0 33383
Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation. (Contributed by AV, 14-Sep-2023.)
Assertion
Ref Expression
satf0 (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) ↾ suc ω)
Distinct variable group:   𝑓,𝑖,𝑗,𝑢,𝑣,𝑥,𝑦

Proof of Theorem satf0
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5240 . . 3 ∅ ∈ V
2 satf 33364 . . 3 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) ↾ suc ω))
31, 1, 2mp2an 690 . 2 (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) ↾ suc ω)
4 peano1 7767 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ ω
54ne0ii 4277 . . . . . . . . . . . . . . . . . 18 ω ≠ ∅
6 map0b 8702 . . . . . . . . . . . . . . . . . 18 (ω ≠ ∅ → (∅ ↑m ω) = ∅)
75, 6ax-mp 5 . . . . . . . . . . . . . . . . 17 (∅ ↑m ω) = ∅
87difeq1i 4059 . . . . . . . . . . . . . . . 16 ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = (∅ ∖ ((2nd𝑢) ∩ (2nd𝑣)))
9 0dif 4341 . . . . . . . . . . . . . . . 16 (∅ ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ∅
108, 9eqtri 2764 . . . . . . . . . . . . . . 15 ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) = ∅
1110eqeq2i 2749 . . . . . . . . . . . . . 14 (𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝑦 = ∅)
1211anbi2i 624 . . . . . . . . . . . . 13 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
1312rexbii 3094 . . . . . . . . . . . 12 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
14 r19.41v 3182 . . . . . . . . . . . 12 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ↔ (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
1513, 14bitri 275 . . . . . . . . . . 11 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅))
167rabeqi 3423 . . . . . . . . . . . . . . . 16 {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = {𝑎 ∈ ∅ ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}
17 rab0 4322 . . . . . . . . . . . . . . . 16 {𝑎 ∈ ∅ ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = ∅
1816, 17eqtri 2764 . . . . . . . . . . . . . . 15 {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} = ∅
1918eqeq2i 2749 . . . . . . . . . . . . . 14 (𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝑦 = ∅)
2019anbi2i 624 . . . . . . . . . . . . 13 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
2120rexbii 3094 . . . . . . . . . . . 12 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
22 r19.41v 3182 . . . . . . . . . . . 12 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅) ↔ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
2321, 22bitri 275 . . . . . . . . . . 11 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅))
2415, 23orbi12i 913 . . . . . . . . . 10 ((∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)))
2524rexbii 3094 . . . . . . . . 9 (∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)))
26 andir 1007 . . . . . . . . . . 11 (((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅) ↔ ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)))
2726bicomi 223 . . . . . . . . . 10 (((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)) ↔ ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
2827rexbii 3094 . . . . . . . . 9 (∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ∅) ∨ (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = ∅)) ↔ ∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
29 r19.41v 3182 . . . . . . . . 9 (∃𝑢𝑓 ((∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅) ↔ (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
3025, 28, 293bitri 297 . . . . . . . 8 (∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) ∧ 𝑦 = ∅))
3130biancomi 464 . . . . . . 7 (∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))))
3231opabbii 5148 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}
3332uneq2i 4100 . . . . 5 (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})
3433mpteq2i 5186 . . . 4 (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))}))
357rabeqi 3423 . . . . . . . . . . 11 {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)} = {𝑎 ∈ ∅ ∣ (𝑎𝑖)∅(𝑎𝑗)}
36 rab0 4322 . . . . . . . . . . 11 {𝑎 ∈ ∅ ∣ (𝑎𝑖)∅(𝑎𝑗)} = ∅
3735, 36eqtri 2764 . . . . . . . . . 10 {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)} = ∅
3837eqeq2i 2749 . . . . . . . . 9 (𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)} ↔ 𝑦 = ∅)
3938anbi2i 624 . . . . . . . 8 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
40392rexbii 3125 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
41 r19.41vv 3212 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
4240, 41bitri 275 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = ∅))
4342biancomi 464 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)}) ↔ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)))
4443opabbii 5148 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}
45 rdgeq12 8275 . . . 4 (((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})) = (𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) → rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) = rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}))
4634, 44, 45mp2an 690 . . 3 rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) = rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))})
4746reseq1i 5899 . 2 (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((∅ ↑m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ ∀𝑧 ∈ ∅ ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (∅ ↑m ω) ∣ (𝑎𝑖)∅(𝑎𝑗)})}) ↾ suc ω) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) ↾ suc ω)
483, 47eqtri 2764 1 (∅ Sat ∅) = (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑢𝑓 (∃𝑣𝑓 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)))})), {⟨𝑥, 𝑦⟩ ∣ (𝑦 = ∅ ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗))}) ↾ suc ω)
Colors of variables: wff setvar class
Syntax hints:  wa 397  wo 845   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  {crab 3303  Vcvv 3437  cdif 3889  cun 3890  cin 3891  c0 4262  {csn 4565  cop 4571   class class class wbr 5081  {copab 5143  cmpt 5164  cres 5602  suc csuc 6283  cfv 6458  (class class class)co 7307  ωcom 7744  1st c1st 7861  2nd c2nd 7862  reccrdg 8271  m cmap 8646  𝑔cgoe 33344  𝑔cgna 33345  𝑔cgol 33346   Sat csat 33347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-map 8648  df-sat 33354
This theorem is referenced by:  satf0sucom  33384
  Copyright terms: Public domain W3C validator