Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunab | Structured version Visualization version GIF version |
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
Ref | Expression |
---|---|
iunab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfab1 2909 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
3 | 1, 2 | nfiun 4954 | . . 3 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
4 | nfab1 2909 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | |
5 | 3, 4 | cleqf 2938 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) |
6 | abid 2719 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | rexbii 3181 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
8 | eliun 4928 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) | |
9 | abid 2719 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑}) |
11 | 5, 10 | mpgbir 1802 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-iun 4926 |
This theorem is referenced by: iunrab 4982 iunid 4990 dfimafn2 6833 rabiun 35750 dfaimafn2 44658 rnfdmpr 44773 |
Copyright terms: Public domain | W3C validator |