| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunab | Structured version Visualization version GIF version | ||
| Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
| Ref | Expression |
|---|---|
| iunab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfab1 2907 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 3 | 1, 2 | nfiun 5023 | . . 3 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
| 4 | nfab1 2907 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | |
| 5 | 3, 4 | cleqf 2934 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) |
| 6 | abid 2718 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 7 | 6 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 8 | eliun 4995 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) | |
| 9 | abid 2718 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑}) |
| 11 | 5, 10 | mpgbir 1799 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 ∪ ciun 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-v 3482 df-iun 4993 |
| This theorem is referenced by: iunrab 5052 iunidOLD 5061 dfimafn2 6972 pzriprnglem10 21501 pzriprnglem11 21502 rabiun 37600 dfaimafn2 47178 rnfdmpr 47293 |
| Copyright terms: Public domain | W3C validator |