Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Structured version   Visualization version   GIF version

Theorem jm2.22 41305
Description: Lemma for jm2.20nn 41307. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Distinct variable groups:   𝐴,𝑖,𝑥   𝑖,𝑁,𝑥   𝑖,𝐽,𝑥

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 12524 . . . . 5 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
2 jm2.21 41304 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
31, 2syl3an3 1165 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
4 frmx 41223 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
54fovcl 7484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
653adant3 1132 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
76nn0cnd 12475 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℂ)
8 eluzelz 12773 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
9 zsqcl 14034 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
10 peano2zm 12546 . . . . . . . . . 10 ((𝐴↑2) ∈ ℤ → ((𝐴↑2) − 1) ∈ ℤ)
118, 9, 103syl 18 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℤ)
1312zcnd 12608 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℂ)
1413sqrtcld 15322 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
15 frmy 41224 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1615fovcl 7484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
17163adant3 1132 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℤ)
1817zcnd 12608 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℂ)
1914, 18mulcld 11175 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
20 simp3 1138 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℕ0)
21 binom 15715 . . . . 5 (((𝐴 Xrm 𝑁) ∈ ℂ ∧ ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
227, 19, 20, 21syl3anc 1371 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
23 rabnc 4347 . . . . . . 7 ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅
2423a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅)
25 rabxm 4346 . . . . . . 7 (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥})
2625a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}))
27 fzfid 13878 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) ∈ Fin)
28 simpl3 1193 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝐽 ∈ ℕ0)
29 elfzelz 13441 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℤ)
3029adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℤ)
31 bccl 14222 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℕ0)
3231nn0zd 12525 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℤ)
3328, 30, 32syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℤ)
3433zcnd 12608 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℂ)
356nn0zd 12525 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℤ)
3635adantr 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℤ)
3736zcnd 12608 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℂ)
38 fznn0sub 13473 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → (𝐽𝑖) ∈ ℕ0)
3938adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽𝑖) ∈ ℕ0)
4037, 39expcld 14051 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
4112adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℤ)
4241zcnd 12608 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℂ)
4342sqrtcld 15322 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
4417adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4544zcnd 12608 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℂ)
4643, 45mulcld 11175 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
47 elfznn0 13534 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
4847adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
4946, 48expcld 14051 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℂ)
5040, 49mulcld 11175 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℂ)
5134, 50mulcld 11175 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℂ)
5224, 26, 27, 51fsumsplit 15626 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))))
53 fzfi 13877 . . . . . . . . . 10 (0...𝐽) ∈ Fin
54 ssrab2 4037 . . . . . . . . . 10 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)
55 ssfi 9117 . . . . . . . . . 10 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
5653, 54, 55mp2an 690 . . . . . . . . 9 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin
5756a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
58 breq2 5109 . . . . . . . . . . 11 (𝑥 = 𝑖 → (2 ∥ 𝑥 ↔ 2 ∥ 𝑖))
5958notbid 317 . . . . . . . . . 10 (𝑥 = 𝑖 → (¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑖))
6059elrab 3645 . . . . . . . . 9 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖))
6134adantrr 715 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℂ)
6240adantrr 715 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
63 zexpcl 13982 . . . . . . . . . . . . . . 15 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 𝑖 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6417, 47, 63syl2an 596 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6564zcnd 12608 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6665adantrr 715 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6742adantrr 715 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
6829adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℤ)
69 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 𝑖)
70 1zzd 12534 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 1 ∈ ℤ)
71 n2dvds1 16250 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 1
7271a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 1)
73 omoe 16246 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑖 − 1))
7468, 69, 70, 72, 73syl22anc 837 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∥ (𝑖 − 1))
75 2z 12535 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
7675a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℤ)
77 2ne0 12257 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ≠ 0)
79 peano2zm 12546 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → (𝑖 − 1) ∈ ℤ)
8029, 79syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℤ)
8180adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℤ)
82 dvdsval2 16139 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑖 − 1) ∈ ℤ) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8376, 78, 81, 82syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8474, 83mpbid 231 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℤ)
8580zred 12607 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℝ)
8685adantr 481 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℝ)
87 dvds0 16154 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∥ 0)
8875, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ 0
89 breq2 5109 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (2 ∥ 𝑖 ↔ 2 ∥ 0))
9088, 89mpbiri 257 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 2 ∥ 𝑖)
9190con3i 154 . . . . . . . . . . . . . . . . . . . 20 (¬ 2 ∥ 𝑖 → ¬ 𝑖 = 0)
9291adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 𝑖 = 0)
9347adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ0)
94 elnn0 12415 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℕ ∨ 𝑖 = 0))
9593, 94sylib 217 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 ∈ ℕ ∨ 𝑖 = 0))
96 orel2 889 . . . . . . . . . . . . . . . . . . 19 𝑖 = 0 → ((𝑖 ∈ ℕ ∨ 𝑖 = 0) → 𝑖 ∈ ℕ))
9792, 95, 96sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ)
98 nnm1nn0 12454 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℕ0)
10099nn0ge0d 12476 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ (𝑖 − 1))
101 2re 12227 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℝ)
103 2pos 12256 . . . . . . . . . . . . . . . . 17 0 < 2
104103a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 < 2)
105 divge0 12024 . . . . . . . . . . . . . . . 16 ((((𝑖 − 1) ∈ ℝ ∧ 0 ≤ (𝑖 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑖 − 1) / 2))
10686, 100, 102, 104, 105syl22anc 837 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ ((𝑖 − 1) / 2))
107 elnn0z 12512 . . . . . . . . . . . . . . 15 (((𝑖 − 1) / 2) ∈ ℕ0 ↔ (((𝑖 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑖 − 1) / 2)))
10884, 106, 107sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℕ0)
109108adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝑖 − 1) / 2) ∈ ℕ0)
11067, 109expcld 14051 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℂ)
11166, 110mulcld 11175 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℂ)
11262, 111mulcld 11175 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℂ)
11361, 112mulcld 11175 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11460, 113sylan2b 594 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11557, 14, 114fsummulc2 15669 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
11643adantrr 715 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
117116, 61, 112mul12d 11364 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
118116, 62, 111mul12d 11364 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
11943, 48expcld 14051 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
120119adantrr 715 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
12166, 120mulcomd 11176 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
122116, 66, 110mul12d 11364 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))
123 2nn0 12430 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
124123a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
125116, 109, 124expmuld 14054 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)))
12680zcnd 12608 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℂ)
127126ad2antrl 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝑖 − 1) ∈ ℂ)
128 2cnd 12231 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℂ)
12977a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ≠ 0)
130127, 128, 129divcan2d 11933 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (2 · ((𝑖 − 1) / 2)) = (𝑖 − 1))
131130oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
13267sqsqrtd 15324 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
133132oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)) = (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))
134125, 131, 1333eqtr3rd 2785 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
135134oveq1d 7372 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
136116, 110mulcomd 11176 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))))
13797adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ)
138 expm1t 13996 . . . . . . . . . . . . . . . . . 18 (((√‘((𝐴↑2) − 1)) ∈ ℂ ∧ 𝑖 ∈ ℕ) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
139116, 137, 138syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
140135, 136, 1393eqtr4d 2786 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑𝑖))
141140oveq2d 7373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
142122, 141eqtrd 2776 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
14343, 45, 48mulexpd 14066 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
144143adantrr 715 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
145121, 142, 1443eqtr4d 2786 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))
146145oveq2d 7373 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
147118, 146eqtrd 2776 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
148147oveq2d 7373 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
149117, 148eqtrd 2776 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
15060, 149sylan2b 594 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
151150sumeq2dv 15588 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
152115, 151eqtr2d 2777 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
153152oveq2d 7373 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
15452, 153eqtrd 2776 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
1553, 22, 1543eqtrd 2780 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
156 rmspecsqrtnq 41215 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
1571563ad2ant1 1133 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
158 nn0ssq 12882 . . . . 5 0 ⊆ ℚ
159 simp1 1136 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
160 simp2 1137 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝑁 ∈ ℤ)
16113ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℤ)
162160, 161zmulcld 12613 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝑁 · 𝐽) ∈ ℤ)
1634fovcl 7484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
164159, 162, 163syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
165158, 164sselid 3942 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ)
166 zssq 12881 . . . . 5 ℤ ⊆ ℚ
16715fovcl 7484 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
168159, 162, 167syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
169166, 168sselid 3942 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ)
170 ssrab2 4037 . . . . . . . 8 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)
171 ssfi 9117 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17253, 170, 171mp2an 690 . . . . . . 7 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin
173172a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17458elrab 3645 . . . . . . 7 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖))
17533adantrr 715 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
176 zexpcl 13982 . . . . . . . . . . 11 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑖) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17736, 39, 176syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
178177adantrr 715 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17943adantrr 715 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
18045adantrr 715 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐴 Yrm 𝑁) ∈ ℂ)
18147ad2antrl 726 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ0)
182179, 180, 181mulexpd 14066 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
18329zcnd 12608 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℂ)
184183adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℂ)
185 2cnd 12231 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ∈ ℂ)
18677a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ≠ 0)
187184, 185, 186divcan2d 11933 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (2 · (𝑖 / 2)) = 𝑖)
188187eqcomd 2742 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 = (2 · (𝑖 / 2)))
189188adantrr 715 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 = (2 · (𝑖 / 2)))
190189oveq2d 7373 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))))
19175a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ∈ ℤ)
19277a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ≠ 0)
193 nn0z 12524 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
194 dvdsval2 16139 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑖 ∈ ℤ) → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
195191, 192, 193, 194syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
196195biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℤ)
197 nn0re 12422 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
198197adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 𝑖 ∈ ℝ)
199 nn0ge0 12438 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 0 ≤ 𝑖)
200199adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ 𝑖)
201101a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 2 ∈ ℝ)
202103a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 < 2)
203 divge0 12024 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑖 / 2))
204198, 200, 201, 202, 203syl22anc 837 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ (𝑖 / 2))
205 elnn0z 12512 . . . . . . . . . . . . . . . . 17 ((𝑖 / 2) ∈ ℕ0 ↔ ((𝑖 / 2) ∈ ℤ ∧ 0 ≤ (𝑖 / 2)))
206196, 204, 205sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
20747, 206sylan 580 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
208207adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝑖 / 2) ∈ ℕ0)
209123a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
210179, 208, 209expmuld 14054 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)))
21142adantrr 715 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
212211sqsqrtd 15324 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
213212oveq1d 7372 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
214190, 210, 2133eqtrd 2780 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
215214oveq1d 7372 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
216182, 215eqtrd 2776 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
217 zexpcl 13982 . . . . . . . . . . . 12 ((((𝐴↑2) − 1) ∈ ℤ ∧ (𝑖 / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21812, 207, 217syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21964adantrr 715 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
220218, 219zmulcld 12613 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)) ∈ ℤ)
221216, 220eqeltrd 2838 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℤ)
222178, 221zmulcld 12613 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℤ)
223175, 222zmulcld 12613 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
224174, 223sylan2b 594 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
225173, 224fsumzcl 15620 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
226166, 225sselid 3942 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ)
22733adantrr 715 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
228177adantrr 715 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
22964adantrr 715 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
230 zexpcl 13982 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑖 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
23112, 108, 230syl2an 596 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
232229, 231zmulcld 12613 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℤ)
233228, 232zmulcld 12613 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℤ)
234227, 233zmulcld 12613 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23560, 234sylan2b 594 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23657, 235fsumzcl 15620 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
237166, 236sselid 3942 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)
238 qirropth 41217 . . . 4 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ ∧ (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ) ∧ (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ ∧ Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
239157, 165, 169, 226, 237, 238syl122anc 1379 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
240155, 239mpbid 231 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
241240simprd 496 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  {crab 3407  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  cq 12873  ...cfz 13424  cexp 13967  Ccbc 14202  csqrt 15118  Σcsu 15570  cdvds 16136   Xrm crmx 41209   Yrm crmy 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-squarenn 41150  df-pell1qr 41151  df-pell14qr 41152  df-pell1234qr 41153  df-pellfund 41154  df-rmx 41211  df-rmy 41212
This theorem is referenced by:  jm2.23  41306
  Copyright terms: Public domain W3C validator