Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Structured version   Visualization version   GIF version

Theorem jm2.22 42971
Description: Lemma for jm2.20nn 42973. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Distinct variable groups:   𝐴,𝑖,𝑥   𝑖,𝑁,𝑥   𝑖,𝐽,𝑥

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 12514 . . . . 5 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
2 jm2.21 42970 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
31, 2syl3an3 1165 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
4 frmx 42889 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
54fovcl 7481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
653adant3 1132 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
76nn0cnd 12465 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℂ)
8 eluzelz 12763 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
9 zsqcl 14054 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
10 peano2zm 12536 . . . . . . . . . 10 ((𝐴↑2) ∈ ℤ → ((𝐴↑2) − 1) ∈ ℤ)
118, 9, 103syl 18 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
12113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℤ)
1312zcnd 12599 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℂ)
1413sqrtcld 15365 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
15 frmy 42890 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1615fovcl 7481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
17163adant3 1132 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℤ)
1817zcnd 12599 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℂ)
1914, 18mulcld 11154 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
20 simp3 1138 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℕ0)
21 binom 15755 . . . . 5 (((𝐴 Xrm 𝑁) ∈ ℂ ∧ ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
227, 19, 20, 21syl3anc 1373 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
23 rabnc 4344 . . . . . . 7 ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅
2423a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅)
25 rabxm 4343 . . . . . . 7 (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥})
2625a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}))
27 fzfid 13898 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) ∈ Fin)
28 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝐽 ∈ ℕ0)
29 elfzelz 13445 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℤ)
3029adantl 481 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℤ)
31 bccl 14247 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℕ0)
3231nn0zd 12515 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℤ)
3328, 30, 32syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℤ)
3433zcnd 12599 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℂ)
356nn0zd 12515 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℤ)
3635adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℤ)
3736zcnd 12599 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℂ)
38 fznn0sub 13477 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → (𝐽𝑖) ∈ ℕ0)
3938adantl 481 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽𝑖) ∈ ℕ0)
4037, 39expcld 14071 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
4112adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℤ)
4241zcnd 12599 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℂ)
4342sqrtcld 15365 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
4417adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4544zcnd 12599 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℂ)
4643, 45mulcld 11154 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
47 elfznn0 13541 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
4847adantl 481 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
4946, 48expcld 14071 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℂ)
5040, 49mulcld 11154 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℂ)
5134, 50mulcld 11154 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℂ)
5224, 26, 27, 51fsumsplit 15666 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))))
53 fzfi 13897 . . . . . . . . . 10 (0...𝐽) ∈ Fin
54 ssrab2 4033 . . . . . . . . . 10 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)
55 ssfi 9097 . . . . . . . . . 10 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
5653, 54, 55mp2an 692 . . . . . . . . 9 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin
5756a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
58 breq2 5099 . . . . . . . . . . 11 (𝑥 = 𝑖 → (2 ∥ 𝑥 ↔ 2 ∥ 𝑖))
5958notbid 318 . . . . . . . . . 10 (𝑥 = 𝑖 → (¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑖))
6059elrab 3650 . . . . . . . . 9 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖))
6134adantrr 717 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℂ)
6240adantrr 717 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
63 zexpcl 14001 . . . . . . . . . . . . . . 15 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 𝑖 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6417, 47, 63syl2an 596 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6564zcnd 12599 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6665adantrr 717 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6742adantrr 717 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
6829adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℤ)
69 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 𝑖)
70 1zzd 12524 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 1 ∈ ℤ)
71 n2dvds1 16297 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 1
7271a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 1)
73 omoe 16293 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑖 − 1))
7468, 69, 70, 72, 73syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∥ (𝑖 − 1))
75 2z 12525 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
7675a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℤ)
77 2ne0 12250 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ≠ 0)
79 peano2zm 12536 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → (𝑖 − 1) ∈ ℤ)
8029, 79syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℤ)
8180adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℤ)
82 dvdsval2 16184 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑖 − 1) ∈ ℤ) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8376, 78, 81, 82syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8474, 83mpbid 232 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℤ)
8580zred 12598 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℝ)
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℝ)
87 dvds0 16200 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∥ 0)
8875, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ 0
89 breq2 5099 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (2 ∥ 𝑖 ↔ 2 ∥ 0))
9088, 89mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 2 ∥ 𝑖)
9190con3i 154 . . . . . . . . . . . . . . . . . . . 20 (¬ 2 ∥ 𝑖 → ¬ 𝑖 = 0)
9291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 𝑖 = 0)
9347adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ0)
94 elnn0 12404 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℕ ∨ 𝑖 = 0))
9593, 94sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 ∈ ℕ ∨ 𝑖 = 0))
96 orel2 890 . . . . . . . . . . . . . . . . . . 19 𝑖 = 0 → ((𝑖 ∈ ℕ ∨ 𝑖 = 0) → 𝑖 ∈ ℕ))
9792, 95, 96sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ)
98 nnm1nn0 12443 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℕ0)
10099nn0ge0d 12466 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ (𝑖 − 1))
101 2re 12220 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℝ)
103 2pos 12249 . . . . . . . . . . . . . . . . 17 0 < 2
104103a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 < 2)
105 divge0 12012 . . . . . . . . . . . . . . . 16 ((((𝑖 − 1) ∈ ℝ ∧ 0 ≤ (𝑖 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑖 − 1) / 2))
10686, 100, 102, 104, 105syl22anc 838 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ ((𝑖 − 1) / 2))
107 elnn0z 12502 . . . . . . . . . . . . . . 15 (((𝑖 − 1) / 2) ∈ ℕ0 ↔ (((𝑖 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑖 − 1) / 2)))
10884, 106, 107sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℕ0)
109108adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝑖 − 1) / 2) ∈ ℕ0)
11067, 109expcld 14071 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℂ)
11166, 110mulcld 11154 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℂ)
11262, 111mulcld 11154 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℂ)
11361, 112mulcld 11154 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11460, 113sylan2b 594 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11557, 14, 114fsummulc2 15709 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
11643adantrr 717 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
117116, 61, 112mul12d 11343 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
118116, 62, 111mul12d 11343 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
11943, 48expcld 14071 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
120119adantrr 717 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
12166, 120mulcomd 11155 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
122116, 66, 110mul12d 11343 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))
123 2nn0 12419 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
124123a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
125116, 109, 124expmuld 14074 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)))
12680zcnd 12599 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℂ)
127126ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝑖 − 1) ∈ ℂ)
128 2cnd 12224 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℂ)
12977a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ≠ 0)
130127, 128, 129divcan2d 11920 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (2 · ((𝑖 − 1) / 2)) = (𝑖 − 1))
131130oveq2d 7369 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
13267sqsqrtd 15367 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
133132oveq1d 7368 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)) = (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))
134125, 131, 1333eqtr3rd 2773 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
135134oveq1d 7368 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
136116, 110mulcomd 11155 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))))
13797adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ)
138 expm1t 14015 . . . . . . . . . . . . . . . . . 18 (((√‘((𝐴↑2) − 1)) ∈ ℂ ∧ 𝑖 ∈ ℕ) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
139116, 137, 138syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
140135, 136, 1393eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑𝑖))
141140oveq2d 7369 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
142122, 141eqtrd 2764 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
14343, 45, 48mulexpd 14086 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
144143adantrr 717 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
145121, 142, 1443eqtr4d 2774 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))
146145oveq2d 7369 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
147118, 146eqtrd 2764 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
148147oveq2d 7369 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
149117, 148eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
15060, 149sylan2b 594 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
151150sumeq2dv 15627 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
152115, 151eqtr2d 2765 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
153152oveq2d 7369 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
15452, 153eqtrd 2764 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
1553, 22, 1543eqtrd 2768 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
156 rmspecsqrtnq 42882 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
1571563ad2ant1 1133 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
158 nn0ssq 12876 . . . . 5 0 ⊆ ℚ
159 simp1 1136 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
160 simp2 1137 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝑁 ∈ ℤ)
16113ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℤ)
162160, 161zmulcld 12604 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝑁 · 𝐽) ∈ ℤ)
1634fovcl 7481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
164159, 162, 163syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
165158, 164sselid 3935 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ)
166 zssq 12875 . . . . 5 ℤ ⊆ ℚ
16715fovcl 7481 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
168159, 162, 167syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
169166, 168sselid 3935 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ)
170 ssrab2 4033 . . . . . . . 8 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)
171 ssfi 9097 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17253, 170, 171mp2an 692 . . . . . . 7 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin
173172a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17458elrab 3650 . . . . . . 7 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖))
17533adantrr 717 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
176 zexpcl 14001 . . . . . . . . . . 11 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑖) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17736, 39, 176syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
178177adantrr 717 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17943adantrr 717 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
18045adantrr 717 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐴 Yrm 𝑁) ∈ ℂ)
18147ad2antrl 728 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ0)
182179, 180, 181mulexpd 14086 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
18329zcnd 12599 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℂ)
184183adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℂ)
185 2cnd 12224 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ∈ ℂ)
18677a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ≠ 0)
187184, 185, 186divcan2d 11920 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (2 · (𝑖 / 2)) = 𝑖)
188187eqcomd 2735 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 = (2 · (𝑖 / 2)))
189188adantrr 717 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 = (2 · (𝑖 / 2)))
190189oveq2d 7369 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))))
19175a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ∈ ℤ)
19277a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ≠ 0)
193 nn0z 12514 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
194 dvdsval2 16184 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑖 ∈ ℤ) → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
195191, 192, 193, 194syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
196195biimpa 476 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℤ)
197 nn0re 12411 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
198197adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 𝑖 ∈ ℝ)
199 nn0ge0 12427 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 0 ≤ 𝑖)
200199adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ 𝑖)
201101a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 2 ∈ ℝ)
202103a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 < 2)
203 divge0 12012 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑖 / 2))
204198, 200, 201, 202, 203syl22anc 838 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ (𝑖 / 2))
205 elnn0z 12502 . . . . . . . . . . . . . . . . 17 ((𝑖 / 2) ∈ ℕ0 ↔ ((𝑖 / 2) ∈ ℤ ∧ 0 ≤ (𝑖 / 2)))
206196, 204, 205sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
20747, 206sylan 580 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
208207adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝑖 / 2) ∈ ℕ0)
209123a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
210179, 208, 209expmuld 14074 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)))
21142adantrr 717 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
212211sqsqrtd 15367 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
213212oveq1d 7368 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
214190, 210, 2133eqtrd 2768 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
215214oveq1d 7368 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
216182, 215eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
217 zexpcl 14001 . . . . . . . . . . . 12 ((((𝐴↑2) − 1) ∈ ℤ ∧ (𝑖 / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21812, 207, 217syl2an 596 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21964adantrr 717 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
220218, 219zmulcld 12604 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)) ∈ ℤ)
221216, 220eqeltrd 2828 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℤ)
222178, 221zmulcld 12604 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℤ)
223175, 222zmulcld 12604 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
224174, 223sylan2b 594 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
225173, 224fsumzcl 15660 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
226166, 225sselid 3935 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ)
22733adantrr 717 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
228177adantrr 717 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
22964adantrr 717 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
230 zexpcl 14001 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑖 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
23112, 108, 230syl2an 596 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
232229, 231zmulcld 12604 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℤ)
233228, 232zmulcld 12604 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℤ)
234227, 233zmulcld 12604 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23560, 234sylan2b 594 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23657, 235fsumzcl 15660 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
237166, 236sselid 3935 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)
238 qirropth 42884 . . . 4 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ ∧ (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ) ∧ (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ ∧ Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
239157, 165, 169, 226, 237, 238syl122anc 1381 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
240155, 239mpbid 232 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
241240simprd 495 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3396  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cq 12867  ...cfz 13428  cexp 13986  Ccbc 14227  csqrt 15158  Σcsu 15611  cdvds 16181   Xrm crmx 42876   Yrm crmy 42877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-numer 16664  df-denom 16665  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-squarenn 42817  df-pell1qr 42818  df-pell14qr 42819  df-pell1234qr 42820  df-pellfund 42821  df-rmx 42878  df-rmy 42879
This theorem is referenced by:  jm2.23  42972
  Copyright terms: Public domain W3C validator