Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.22 Structured version   Visualization version   GIF version

Theorem jm2.22 39459
Description: Lemma for jm2.20nn 39461. Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
jm2.22 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Distinct variable groups:   𝐴,𝑖,𝑥   𝑖,𝑁,𝑥   𝑖,𝐽,𝑥

Proof of Theorem jm2.22
StepHypRef Expression
1 nn0z 11997 . . . . 5 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
2 jm2.21 39458 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
31, 2syl3an3 1159 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽))
4 frmx 39377 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
54fovcl 7272 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
653adant3 1126 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
76nn0cnd 11949 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℂ)
8 eluzelz 12245 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
9 zsqcl 13487 . . . . . . . . . 10 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
10 peano2zm 12017 . . . . . . . . . 10 ((𝐴↑2) ∈ ℤ → ((𝐴↑2) − 1) ∈ ℤ)
118, 9, 103syl 18 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
12113ad2ant1 1127 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℤ)
1312zcnd 12080 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℂ)
1413sqrtcld 14790 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
15 frmy 39378 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
1615fovcl 7272 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
17163adant3 1126 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℤ)
1817zcnd 12080 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℂ)
1914, 18mulcld 10653 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
20 simp3 1132 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℕ0)
21 binom 15177 . . . . 5 (((𝐴 Xrm 𝑁) ∈ ℂ ∧ ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
227, 19, 20, 21syl3anc 1365 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm 𝑁) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)))↑𝐽) = Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
23 rabnc 4344 . . . . . . 7 ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅
2423a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∩ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) = ∅)
25 rabxm 4343 . . . . . . 7 (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥})
2625a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) = ({𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∪ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}))
27 fzfid 13334 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (0...𝐽) ∈ Fin)
28 simpl3 1187 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝐽 ∈ ℕ0)
29 elfzelz 12901 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℤ)
3029adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℤ)
31 bccl 13675 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℕ0)
3231nn0zd 12077 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑖 ∈ ℤ) → (𝐽C𝑖) ∈ ℤ)
3328, 30, 32syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℤ)
3433zcnd 12080 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽C𝑖) ∈ ℂ)
356nn0zd 12077 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℤ)
3635adantr 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℤ)
3736zcnd 12080 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Xrm 𝑁) ∈ ℂ)
38 fznn0sub 12932 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → (𝐽𝑖) ∈ ℕ0)
3938adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐽𝑖) ∈ ℕ0)
4037, 39expcld 13503 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
4112adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℤ)
4241zcnd 12080 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴↑2) − 1) ∈ ℂ)
4342sqrtcld 14790 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
4417adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℤ)
4544zcnd 12080 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (𝐴 Yrm 𝑁) ∈ ℂ)
4643, 45mulcld 10653 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁)) ∈ ℂ)
47 elfznn0 12993 . . . . . . . . . 10 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℕ0)
4847adantl 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℕ0)
4946, 48expcld 13503 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℂ)
5040, 49mulcld 10653 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℂ)
5134, 50mulcld 10653 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℂ)
5224, 26, 27, 51fsumsplit 15089 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))))
53 fzfi 13333 . . . . . . . . . 10 (0...𝐽) ∈ Fin
54 ssrab2 4059 . . . . . . . . . 10 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)
55 ssfi 8730 . . . . . . . . . 10 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
5653, 54, 55mp2an 688 . . . . . . . . 9 {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin
5756a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ∈ Fin)
58 breq2 5066 . . . . . . . . . . 11 (𝑥 = 𝑖 → (2 ∥ 𝑥 ↔ 2 ∥ 𝑖))
5958notbid 319 . . . . . . . . . 10 (𝑥 = 𝑖 → (¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑖))
6059elrab 3683 . . . . . . . . 9 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖))
6134adantrr 713 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℂ)
6240adantrr 713 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℂ)
63 zexpcl 13437 . . . . . . . . . . . . . . 15 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 𝑖 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6417, 47, 63syl2an 595 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
6564zcnd 12080 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6665adantrr 713 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℂ)
6742adantrr 713 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
6829adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℤ)
69 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 𝑖)
70 1zzd 12005 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 1 ∈ ℤ)
71 n2dvds1 15709 . . . . . . . . . . . . . . . . . 18 ¬ 2 ∥ 1
7271a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 2 ∥ 1)
73 omoe 15705 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑖 − 1))
7468, 69, 70, 72, 73syl22anc 836 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∥ (𝑖 − 1))
75 2z 12006 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
7675a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℤ)
77 2ne0 11733 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ≠ 0)
79 peano2zm 12017 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℤ → (𝑖 − 1) ∈ ℤ)
8029, 79syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℤ)
8180adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℤ)
82 dvdsval2 15602 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑖 − 1) ∈ ℤ) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8376, 78, 81, 82syl3anc 1365 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (2 ∥ (𝑖 − 1) ↔ ((𝑖 − 1) / 2) ∈ ℤ))
8474, 83mpbid 233 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℤ)
8580zred 12079 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℝ)
8685adantr 481 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℝ)
87 dvds0 15617 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℤ → 2 ∥ 0)
8875, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ 0
89 breq2 5066 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (2 ∥ 𝑖 ↔ 2 ∥ 0))
9088, 89mpbiri 259 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → 2 ∥ 𝑖)
9190con3i 157 . . . . . . . . . . . . . . . . . . . 20 (¬ 2 ∥ 𝑖 → ¬ 𝑖 = 0)
9291adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ¬ 𝑖 = 0)
9347adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ0)
94 elnn0 11891 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℕ ∨ 𝑖 = 0))
9593, 94sylib 219 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 ∈ ℕ ∨ 𝑖 = 0))
96 orel2 886 . . . . . . . . . . . . . . . . . . 19 𝑖 = 0 → ((𝑖 ∈ ℕ ∨ 𝑖 = 0) → 𝑖 ∈ ℕ))
9792, 95, 96sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 𝑖 ∈ ℕ)
98 nnm1nn0 11930 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → (𝑖 − 1) ∈ ℕ0)
9997, 98syl 17 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → (𝑖 − 1) ∈ ℕ0)
10099nn0ge0d 11950 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ (𝑖 − 1))
101 2re 11703 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 2 ∈ ℝ)
103 2pos 11732 . . . . . . . . . . . . . . . . 17 0 < 2
104103a1i 11 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 < 2)
105 divge0 11501 . . . . . . . . . . . . . . . 16 ((((𝑖 − 1) ∈ ℝ ∧ 0 ≤ (𝑖 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑖 − 1) / 2))
10686, 100, 102, 104, 105syl22anc 836 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → 0 ≤ ((𝑖 − 1) / 2))
107 elnn0z 11986 . . . . . . . . . . . . . . 15 (((𝑖 − 1) / 2) ∈ ℕ0 ↔ (((𝑖 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑖 − 1) / 2)))
10884, 106, 107sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖) → ((𝑖 − 1) / 2) ∈ ℕ0)
109108adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝑖 − 1) / 2) ∈ ℕ0)
11067, 109expcld 13503 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℂ)
11166, 110mulcld 10653 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℂ)
11262, 111mulcld 10653 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℂ)
11361, 112mulcld 10653 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11460, 113sylan2b 593 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℂ)
11557, 14, 114fsummulc2 15131 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
11643adantrr 713 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
117116, 61, 112mul12d 10841 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
118116, 62, 111mul12d 10841 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
11943, 48expcld 13503 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
120119adantrr 713 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) ∈ ℂ)
12166, 120mulcomd 10654 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
122116, 66, 110mul12d 10841 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))
123 2nn0 11906 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ0
124123a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
125116, 109, 124expmuld 13506 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)))
12680zcnd 12080 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (0...𝐽) → (𝑖 − 1) ∈ ℂ)
127126ad2antrl 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝑖 − 1) ∈ ℂ)
128 2cnd 11707 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ∈ ℂ)
12977a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 2 ≠ 0)
130127, 128, 129divcan2d 11410 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (2 · ((𝑖 − 1) / 2)) = (𝑖 − 1))
131130oveq2d 7167 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · ((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
13267sqsqrtd 14792 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
133132oveq1d 7166 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑((𝑖 − 1) / 2)) = (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))
134125, 131, 1333eqtr3rd 2869 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) = ((√‘((𝐴↑2) − 1))↑(𝑖 − 1)))
135134oveq1d 7166 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
136116, 110mulcomd 10654 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) · (√‘((𝐴↑2) − 1))))
13797adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ)
138 expm1t 13450 . . . . . . . . . . . . . . . . . 18 (((√‘((𝐴↑2) − 1)) ∈ ℂ ∧ 𝑖 ∈ ℕ) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
139116, 137, 138syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((√‘((𝐴↑2) − 1))↑(𝑖 − 1)) · (√‘((𝐴↑2) − 1))))
140135, 136, 1393eqtr4d 2870 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) = ((√‘((𝐴↑2) − 1))↑𝑖))
141140oveq2d 7167 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
142122, 141eqtrd 2860 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((𝐴 Yrm 𝑁)↑𝑖) · ((√‘((𝐴↑2) − 1))↑𝑖)))
14343, 45, 48mulexpd 13518 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
144143adantrr 713 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
145121, 142, 1443eqtr4d 2870 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) = (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))
146145oveq2d 7167 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
147118, 146eqtrd 2860 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))
148147oveq2d 7167 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · ((√‘((𝐴↑2) − 1)) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
149117, 148eqtrd 2860 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
15060, 149sylan2b 593 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
151150sumeq2dv 15052 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((√‘((𝐴↑2) − 1)) · ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))))
152115, 151eqtr2d 2861 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
153152oveq2d 7167 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
15452, 153eqtrd 2860 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ (0...𝐽)((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
1553, 22, 1543eqtrd 2864 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
156 rmspecsqrtnq 39370 . . . . 5 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
1571563ad2ant1 1127 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
158 nn0ssq 12349 . . . . 5 0 ⊆ ℚ
159 simp1 1130 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
160 simp2 1131 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝑁 ∈ ℤ)
16113ad2ant3 1129 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → 𝐽 ∈ ℤ)
162160, 161zmulcld 12085 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝑁 · 𝐽) ∈ ℤ)
1634fovcl 7272 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
164159, 162, 163syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℕ0)
165158, 164sseldi 3968 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ)
166 zssq 12348 . . . . 5 ℤ ⊆ ℚ
16715fovcl 7272 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 · 𝐽) ∈ ℤ) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
168159, 162, 167syl2anc 584 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℤ)
169166, 168sseldi 3968 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ)
170 ssrab2 4059 . . . . . . . 8 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)
171 ssfi 8730 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ⊆ (0...𝐽)) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17253, 170, 171mp2an 688 . . . . . . 7 {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin
173172a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ∈ Fin)
17458elrab 3683 . . . . . . 7 (𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ↔ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖))
17533adantrr 713 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
176 zexpcl 13437 . . . . . . . . . . 11 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑖) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17736, 39, 176syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
178177adantrr 713 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
17943adantrr 713 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
18045adantrr 713 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝐴 Yrm 𝑁) ∈ ℂ)
18147ad2antrl 724 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 ∈ ℕ0)
182179, 180, 181mulexpd 13518 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)))
18329zcnd 12080 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0...𝐽) → 𝑖 ∈ ℂ)
184183adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 ∈ ℂ)
185 2cnd 11707 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ∈ ℂ)
18677a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 2 ≠ 0)
187184, 185, 186divcan2d 11410 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → (2 · (𝑖 / 2)) = 𝑖)
188187eqcomd 2831 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ (0...𝐽)) → 𝑖 = (2 · (𝑖 / 2)))
189188adantrr 713 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 𝑖 = (2 · (𝑖 / 2)))
190189oveq2d 7167 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))))
19175a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ∈ ℤ)
19277a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 2 ≠ 0)
193 nn0z 11997 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
194 dvdsval2 15602 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑖 ∈ ℤ) → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
195191, 192, 193, 194syl3anc 1365 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ0 → (2 ∥ 𝑖 ↔ (𝑖 / 2) ∈ ℤ))
196195biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℤ)
197 nn0re 11898 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
198197adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 𝑖 ∈ ℝ)
199 nn0ge0 11914 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ0 → 0 ≤ 𝑖)
200199adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ 𝑖)
201101a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 2 ∈ ℝ)
202103a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 < 2)
203 divge0 11501 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑖 / 2))
204198, 200, 201, 202, 203syl22anc 836 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → 0 ≤ (𝑖 / 2))
205 elnn0z 11986 . . . . . . . . . . . . . . . . 17 ((𝑖 / 2) ∈ ℕ0 ↔ ((𝑖 / 2) ∈ ℤ ∧ 0 ≤ (𝑖 / 2)))
206196, 204, 205sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℕ0 ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
20747, 206sylan 580 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖) → (𝑖 / 2) ∈ ℕ0)
208207adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (𝑖 / 2) ∈ ℕ0)
209123a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → 2 ∈ ℕ0)
210179, 208, 209expmuld 13506 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑(2 · (𝑖 / 2))) = (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)))
21142adantrr 713 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴↑2) − 1) ∈ ℂ)
212211sqsqrtd 14792 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑2) = ((𝐴↑2) − 1))
213212oveq1d 7166 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑2)↑(𝑖 / 2)) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
214190, 210, 2133eqtrd 2864 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((√‘((𝐴↑2) − 1))↑𝑖) = (((𝐴↑2) − 1)↑(𝑖 / 2)))
215214oveq1d 7166 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1))↑𝑖) · ((𝐴 Yrm 𝑁)↑𝑖)) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
216182, 215eqtrd 2860 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) = ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)))
217 zexpcl 13437 . . . . . . . . . . . 12 ((((𝐴↑2) − 1) ∈ ℤ ∧ (𝑖 / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21812, 207, 217syl2an 595 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑(𝑖 / 2)) ∈ ℤ)
21964adantrr 713 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
220218, 219zmulcld 12085 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((((𝐴↑2) − 1)↑(𝑖 / 2)) · ((𝐴 Yrm 𝑁)↑𝑖)) ∈ ℤ)
221216, 220eqeltrd 2917 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖) ∈ ℤ)
222178, 221zmulcld 12085 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖)) ∈ ℤ)
223175, 222zmulcld 12085 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
224174, 223sylan2b 593 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
225173, 224fsumzcl 15084 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℤ)
226166, 225sseldi 3968 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ)
22733adantrr 713 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (𝐽C𝑖) ∈ ℤ)
228177adantrr 713 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Xrm 𝑁)↑(𝐽𝑖)) ∈ ℤ)
22964adantrr 713 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐴 Yrm 𝑁)↑𝑖) ∈ ℤ)
230 zexpcl 13437 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑖 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
23112, 108, 230syl2an 595 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)) ∈ ℤ)
232229, 231zmulcld 12085 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))) ∈ ℤ)
233228, 232zmulcld 12085 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))) ∈ ℤ)
234227, 233zmulcld 12085 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ (𝑖 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑖)) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23560, 234sylan2b 593 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) ∧ 𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥}) → ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
23657, 235fsumzcl 15084 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℤ)
237166, 236sseldi 3968 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)
238 qirropth 39372 . . . 4 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((𝐴 Xrm (𝑁 · 𝐽)) ∈ ℚ ∧ (𝐴 Yrm (𝑁 · 𝐽)) ∈ ℚ) ∧ (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∈ ℚ ∧ Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))) ∈ ℚ)) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
239157, 165, 169, 226, 237, 238syl122anc 1373 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (((𝐴 Xrm (𝑁 · 𝐽)) + ((√‘((𝐴↑2) − 1)) · (𝐴 Yrm (𝑁 · 𝐽)))) = (Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) + ((√‘((𝐴↑2) − 1)) · Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))) ↔ ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))))
240155, 239mpbid 233 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → ((𝐴 Xrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((√‘((𝐴↑2) − 1)) · (𝐴 Yrm 𝑁))↑𝑖))) ∧ (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2)))))))
241240simprd 496 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑖 ∈ {𝑥 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑥} ((𝐽C𝑖) · (((𝐴 Xrm 𝑁)↑(𝐽𝑖)) · (((𝐴 Yrm 𝑁)↑𝑖) · (((𝐴↑2) − 1)↑((𝑖 − 1) / 2))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3020  {crab 3146  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294   class class class wbr 5062  cfv 6351  (class class class)co 7151  Fincfn 8501  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  cq 12340  ...cfz 12885  cexp 13422  Ccbc 13655  csqrt 14585  Σcsu 15035  cdvds 15599   Xrm crmx 39364   Yrm crmy 39365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15836  df-numer 16067  df-denom 16068  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-limc 24381  df-dv 24382  df-log 25055  df-squarenn 39305  df-pell1qr 39306  df-pell14qr 39307  df-pell1234qr 39308  df-pellfund 39309  df-rmx 39366  df-rmy 39367
This theorem is referenced by:  jm2.23  39460
  Copyright terms: Public domain W3C validator