Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgoddnumeven Structured version   Visualization version   GIF version

Theorem vtxdgoddnumeven 27338
 Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdgeven.v 𝑉 = (Vtx‘𝐺)
finsumvtxdgeven.i 𝐼 = (iEdg‘𝐺)
finsumvtxdgeven.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdgoddnumeven ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑣,𝐷   𝑣,𝐼

Proof of Theorem vtxdgoddnumeven
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdgeven.v . . 3 𝑉 = (Vtx‘𝐺)
2 finsumvtxdgeven.i . . 3 𝐼 = (iEdg‘𝐺)
3 finsumvtxdgeven.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3finsumvtxdgeven 27337 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤𝑉 (𝐷𝑤))
5 incom 4181 . . . . . . 7 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
6 rabnc 4344 . . . . . . 7 ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) = ∅
75, 6eqtri 2847 . . . . . 6 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅
87a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅)
9 rabxm 4343 . . . . . . 7 𝑉 = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
109equncomi 4134 . . . . . 6 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)})
1110a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}))
12 simp2 1133 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin)
133fveq1i 6674 . . . . . 6 (𝐷𝑤) = ((VtxDeg‘𝐺)‘𝑤)
14 dmfi 8805 . . . . . . . . 9 (𝐼 ∈ Fin → dom 𝐼 ∈ Fin)
15143ad2ant3 1131 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin)
16 eqid 2824 . . . . . . . . 9 dom 𝐼 = dom 𝐼
171, 2, 16vtxdgfisnn0 27260 . . . . . . . 8 ((dom 𝐼 ∈ Fin ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1815, 17sylan 582 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1918nn0cnd 11960 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ)
2013, 19eqeltrid 2920 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → (𝐷𝑤) ∈ ℂ)
218, 11, 12, 20fsumsplit 15100 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤𝑉 (𝐷𝑤) = (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
2221breq2d 5081 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
23 rabfi 8746 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
24233ad2ant2 1130 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
25 elrabi 3678 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
2615, 25, 17syl2an 597 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
2726nn0zd 12088 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
2813, 27eqeltrid 2920 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
2924, 28fsumzcl 15095 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
3029adantr 483 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
31 fveq2 6673 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐷𝑣) = (𝐷𝑤))
3231breq2d 5081 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (2 ∥ (𝐷𝑣) ↔ 2 ∥ (𝐷𝑤)))
3332notbid 320 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷𝑣) ↔ ¬ 2 ∥ (𝐷𝑤)))
3433elrab 3683 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ ¬ 2 ∥ (𝐷𝑤)))
3534simprbi 499 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → ¬ 2 ∥ (𝐷𝑤))
3635adantl 484 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (𝐷𝑤))
3724, 28, 36sumodd 15742 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3837notbid 320 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3938biimpa 479 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
40 rabfi 8746 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
41403ad2ant2 1130 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
42 elrabi 3678 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
4315, 42, 17syl2an 597 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
4443nn0zd 12088 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
4513, 44eqeltrid 2920 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
4641, 45fsumzcl 15095 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4746adantr 483 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4832elrab 3683 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ 2 ∥ (𝐷𝑤)))
4948simprbi 499 . . . . . . . . 9 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 2 ∥ (𝐷𝑤))
5049adantl 484 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → 2 ∥ (𝐷𝑤))
5141, 45, 50sumeven 15741 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
5251adantr 483 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
53 opeo 15717 . . . . . 6 (((Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) ∧ (Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5430, 39, 47, 52, 53syl22anc 836 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5554ex 415 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
5655con4d 115 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
5722, 56sylbid 242 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
584, 57mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1536   ∈ wcel 2113  {crab 3145   ∪ cun 3937   ∩ cin 3938  ∅c0 4294   class class class wbr 5069  dom cdm 5558  ‘cfv 6358  (class class class)co 7159  Fincfn 8512  ℂcc 10538   + caddc 10543  2c2 11695  ℕ0cn0 11900  ℤcz 11984  ♯chash 13693  Σcsu 15045   ∥ cdvds 15610  Vtxcvtx 26784  iEdgciedg 26785  UPGraphcupgr 26868  VtxDegcvtxdg 27250 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-vtx 26786  df-iedg 26787  df-edg 26836  df-uhgr 26846  df-upgr 26870  df-vtxdg 27251 This theorem is referenced by:  fusgrvtxdgonume  27339
 Copyright terms: Public domain W3C validator