MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgoddnumeven Structured version   Visualization version   GIF version

Theorem vtxdgoddnumeven 29488
Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdgeven.v 𝑉 = (Vtx‘𝐺)
finsumvtxdgeven.i 𝐼 = (iEdg‘𝐺)
finsumvtxdgeven.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdgoddnumeven ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑣,𝐷   𝑣,𝐼

Proof of Theorem vtxdgoddnumeven
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdgeven.v . . 3 𝑉 = (Vtx‘𝐺)
2 finsumvtxdgeven.i . . 3 𝐼 = (iEdg‘𝐺)
3 finsumvtxdgeven.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3finsumvtxdgeven 29487 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤𝑉 (𝐷𝑤))
5 incom 4175 . . . . . . 7 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
6 rabnc 4357 . . . . . . 7 ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) = ∅
75, 6eqtri 2753 . . . . . 6 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅
87a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅)
9 rabxm 4356 . . . . . . 7 𝑉 = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
109equncomi 4126 . . . . . 6 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)})
1110a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}))
12 simp2 1137 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin)
133fveq1i 6862 . . . . . 6 (𝐷𝑤) = ((VtxDeg‘𝐺)‘𝑤)
14 dmfi 9293 . . . . . . . . 9 (𝐼 ∈ Fin → dom 𝐼 ∈ Fin)
15143ad2ant3 1135 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin)
16 eqid 2730 . . . . . . . . 9 dom 𝐼 = dom 𝐼
171, 2, 16vtxdgfisnn0 29410 . . . . . . . 8 ((dom 𝐼 ∈ Fin ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1815, 17sylan 580 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1918nn0cnd 12512 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ)
2013, 19eqeltrid 2833 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → (𝐷𝑤) ∈ ℂ)
218, 11, 12, 20fsumsplit 15714 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤𝑉 (𝐷𝑤) = (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
2221breq2d 5122 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
23 rabfi 9221 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
24233ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
25 elrabi 3657 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
2615, 25, 17syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
2726nn0zd 12562 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
2813, 27eqeltrid 2833 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
2924, 28fsumzcl 15708 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
3029adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
31 fveq2 6861 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐷𝑣) = (𝐷𝑤))
3231breq2d 5122 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (2 ∥ (𝐷𝑣) ↔ 2 ∥ (𝐷𝑤)))
3332notbid 318 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷𝑣) ↔ ¬ 2 ∥ (𝐷𝑤)))
3433elrab 3662 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ ¬ 2 ∥ (𝐷𝑤)))
3534simprbi 496 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → ¬ 2 ∥ (𝐷𝑤))
3635adantl 481 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (𝐷𝑤))
3724, 28, 36sumodd 16365 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3837notbid 318 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3938biimpa 476 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
40 rabfi 9221 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
41403ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
42 elrabi 3657 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
4315, 42, 17syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
4443nn0zd 12562 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
4513, 44eqeltrid 2833 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
4641, 45fsumzcl 15708 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4746adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4832elrab 3662 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ 2 ∥ (𝐷𝑤)))
4948simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 2 ∥ (𝐷𝑤))
5049adantl 481 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → 2 ∥ (𝐷𝑤))
5141, 45, 50sumeven 16364 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
5251adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
53 opeo 16342 . . . . . 6 (((Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) ∧ (Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5430, 39, 47, 52, 53syl22anc 838 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5554ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
5655con4d 115 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
5722, 56sylbid 240 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
584, 57mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  cun 3915  cin 3916  c0 4299   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073   + caddc 11078  2c2 12248  0cn0 12449  cz 12536  chash 14302  Σcsu 15659  cdvds 16229  Vtxcvtx 28930  iEdgciedg 28931  UPGraphcupgr 29014  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-vtxdg 29401
This theorem is referenced by:  fusgrvtxdgonume  29489
  Copyright terms: Public domain W3C validator