MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgoddnumeven Structured version   Visualization version   GIF version

Theorem vtxdgoddnumeven 29534
Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdgeven.v 𝑉 = (Vtx‘𝐺)
finsumvtxdgeven.i 𝐼 = (iEdg‘𝐺)
finsumvtxdgeven.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdgoddnumeven ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑣,𝐷   𝑣,𝐼

Proof of Theorem vtxdgoddnumeven
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdgeven.v . . 3 𝑉 = (Vtx‘𝐺)
2 finsumvtxdgeven.i . . 3 𝐼 = (iEdg‘𝐺)
3 finsumvtxdgeven.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3finsumvtxdgeven 29533 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤𝑉 (𝐷𝑤))
5 incom 4168 . . . . . . 7 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
6 rabnc 4350 . . . . . . 7 ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) = ∅
75, 6eqtri 2752 . . . . . 6 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅
87a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅)
9 rabxm 4349 . . . . . . 7 𝑉 = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
109equncomi 4119 . . . . . 6 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)})
1110a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}))
12 simp2 1137 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin)
133fveq1i 6841 . . . . . 6 (𝐷𝑤) = ((VtxDeg‘𝐺)‘𝑤)
14 dmfi 9262 . . . . . . . . 9 (𝐼 ∈ Fin → dom 𝐼 ∈ Fin)
15143ad2ant3 1135 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin)
16 eqid 2729 . . . . . . . . 9 dom 𝐼 = dom 𝐼
171, 2, 16vtxdgfisnn0 29456 . . . . . . . 8 ((dom 𝐼 ∈ Fin ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1815, 17sylan 580 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1918nn0cnd 12481 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ)
2013, 19eqeltrid 2832 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → (𝐷𝑤) ∈ ℂ)
218, 11, 12, 20fsumsplit 15683 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤𝑉 (𝐷𝑤) = (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
2221breq2d 5114 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
23 rabfi 9190 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
24233ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
25 elrabi 3651 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
2615, 25, 17syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
2726nn0zd 12531 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
2813, 27eqeltrid 2832 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
2924, 28fsumzcl 15677 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
3029adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
31 fveq2 6840 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐷𝑣) = (𝐷𝑤))
3231breq2d 5114 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (2 ∥ (𝐷𝑣) ↔ 2 ∥ (𝐷𝑤)))
3332notbid 318 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷𝑣) ↔ ¬ 2 ∥ (𝐷𝑤)))
3433elrab 3656 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ ¬ 2 ∥ (𝐷𝑤)))
3534simprbi 496 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → ¬ 2 ∥ (𝐷𝑤))
3635adantl 481 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (𝐷𝑤))
3724, 28, 36sumodd 16334 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3837notbid 318 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3938biimpa 476 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
40 rabfi 9190 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
41403ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
42 elrabi 3651 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
4315, 42, 17syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
4443nn0zd 12531 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
4513, 44eqeltrid 2832 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
4641, 45fsumzcl 15677 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4746adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4832elrab 3656 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ 2 ∥ (𝐷𝑤)))
4948simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 2 ∥ (𝐷𝑤))
5049adantl 481 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → 2 ∥ (𝐷𝑤))
5141, 45, 50sumeven 16333 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
5251adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
53 opeo 16311 . . . . . 6 (((Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) ∧ (Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5430, 39, 47, 52, 53syl22anc 838 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5554ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
5655con4d 115 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
5722, 56sylbid 240 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
584, 57mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  cun 3909  cin 3910  c0 4292   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042   + caddc 11047  2c2 12217  0cn0 12418  cz 12505  chash 14271  Σcsu 15628  cdvds 16198  Vtxcvtx 28976  iEdgciedg 28977  UPGraphcupgr 29060  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-xadd 13049  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-vtxdg 29447
This theorem is referenced by:  fusgrvtxdgonume  29535
  Copyright terms: Public domain W3C validator