MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgoddnumeven Structured version   Visualization version   GIF version

Theorem vtxdgoddnumeven 27823
Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdgeven.v 𝑉 = (Vtx‘𝐺)
finsumvtxdgeven.i 𝐼 = (iEdg‘𝐺)
finsumvtxdgeven.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdgoddnumeven ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑣,𝐷   𝑣,𝐼

Proof of Theorem vtxdgoddnumeven
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdgeven.v . . 3 𝑉 = (Vtx‘𝐺)
2 finsumvtxdgeven.i . . 3 𝐼 = (iEdg‘𝐺)
3 finsumvtxdgeven.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3finsumvtxdgeven 27822 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤𝑉 (𝐷𝑤))
5 incom 4131 . . . . . . 7 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
6 rabnc 4318 . . . . . . 7 ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) = ∅
75, 6eqtri 2766 . . . . . 6 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅
87a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅)
9 rabxm 4317 . . . . . . 7 𝑉 = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
109equncomi 4085 . . . . . 6 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)})
1110a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}))
12 simp2 1135 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin)
133fveq1i 6757 . . . . . 6 (𝐷𝑤) = ((VtxDeg‘𝐺)‘𝑤)
14 dmfi 9027 . . . . . . . . 9 (𝐼 ∈ Fin → dom 𝐼 ∈ Fin)
15143ad2ant3 1133 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin)
16 eqid 2738 . . . . . . . . 9 dom 𝐼 = dom 𝐼
171, 2, 16vtxdgfisnn0 27745 . . . . . . . 8 ((dom 𝐼 ∈ Fin ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1815, 17sylan 579 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1918nn0cnd 12225 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ)
2013, 19eqeltrid 2843 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → (𝐷𝑤) ∈ ℂ)
218, 11, 12, 20fsumsplit 15381 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤𝑉 (𝐷𝑤) = (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
2221breq2d 5082 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
23 rabfi 8973 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
24233ad2ant2 1132 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
25 elrabi 3611 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
2615, 25, 17syl2an 595 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
2726nn0zd 12353 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
2813, 27eqeltrid 2843 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
2924, 28fsumzcl 15375 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
3029adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
31 fveq2 6756 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐷𝑣) = (𝐷𝑤))
3231breq2d 5082 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (2 ∥ (𝐷𝑣) ↔ 2 ∥ (𝐷𝑤)))
3332notbid 317 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷𝑣) ↔ ¬ 2 ∥ (𝐷𝑤)))
3433elrab 3617 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ ¬ 2 ∥ (𝐷𝑤)))
3534simprbi 496 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → ¬ 2 ∥ (𝐷𝑤))
3635adantl 481 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (𝐷𝑤))
3724, 28, 36sumodd 16025 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3837notbid 317 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3938biimpa 476 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
40 rabfi 8973 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
41403ad2ant2 1132 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
42 elrabi 3611 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
4315, 42, 17syl2an 595 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
4443nn0zd 12353 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
4513, 44eqeltrid 2843 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
4641, 45fsumzcl 15375 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4746adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4832elrab 3617 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ 2 ∥ (𝐷𝑤)))
4948simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 2 ∥ (𝐷𝑤))
5049adantl 481 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → 2 ∥ (𝐷𝑤))
5141, 45, 50sumeven 16024 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
5251adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
53 opeo 16002 . . . . . 6 (((Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) ∧ (Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5430, 39, 47, 52, 53syl22anc 835 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5554ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
5655con4d 115 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
5722, 56sylbid 239 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
584, 57mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  cun 3881  cin 3882  c0 4253   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800   + caddc 10805  2c2 11958  0cn0 12163  cz 12249  chash 13972  Σcsu 15325  cdvds 15891  Vtxcvtx 27269  iEdgciedg 27270  UPGraphcupgr 27353  VtxDegcvtxdg 27735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-vtx 27271  df-iedg 27272  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-vtxdg 27736
This theorem is referenced by:  fusgrvtxdgonume  27824
  Copyright terms: Public domain W3C validator