| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | finsumvtxdgeven.v | . . 3
⊢ 𝑉 = (Vtx‘𝐺) | 
| 2 |  | finsumvtxdgeven.i | . . 3
⊢ 𝐼 = (iEdg‘𝐺) | 
| 3 |  | finsumvtxdgeven.d | . . 3
⊢ 𝐷 = (VtxDeg‘𝐺) | 
| 4 | 1, 2, 3 | finsumvtxdgeven 29571 | . 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤)) | 
| 5 |  | incom 4208 | . . . . . . 7
⊢ ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) | 
| 6 |  | rabnc 4390 | . . . . . . 7
⊢ ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) = ∅ | 
| 7 | 5, 6 | eqtri 2764 | . . . . . 6
⊢ ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ∅ | 
| 8 | 7 | a1i 11 | . . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ∅) | 
| 9 |  | rabxm 4389 | . . . . . . 7
⊢ 𝑉 = ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) | 
| 10 | 9 | equncomi 4159 | . . . . . 6
⊢ 𝑉 = ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) | 
| 11 | 10 | a1i 11 | . . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)})) | 
| 12 |  | simp2 1137 | . . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin) | 
| 13 | 3 | fveq1i 6906 | . . . . . 6
⊢ (𝐷‘𝑤) = ((VtxDeg‘𝐺)‘𝑤) | 
| 14 |  | dmfi 9376 | . . . . . . . . 9
⊢ (𝐼 ∈ Fin → dom 𝐼 ∈ Fin) | 
| 15 | 14 | 3ad2ant3 1135 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin) | 
| 16 |  | eqid 2736 | . . . . . . . . 9
⊢ dom 𝐼 = dom 𝐼 | 
| 17 | 1, 2, 16 | vtxdgfisnn0 29494 | . . . . . . . 8
⊢ ((dom
𝐼 ∈ Fin ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) | 
| 18 | 15, 17 | sylan 580 | . . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) | 
| 19 | 18 | nn0cnd 12591 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ) | 
| 20 | 13, 19 | eqeltrid 2844 | . . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → (𝐷‘𝑤) ∈ ℂ) | 
| 21 | 8, 11, 12, 20 | fsumsplit 15778 | . . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) = (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) | 
| 22 | 21 | breq2d 5154 | . . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)))) | 
| 23 |  | rabfi 9304 | . . . . . . . . 9
⊢ (𝑉 ∈ Fin → {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∈ Fin) | 
| 24 | 23 | 3ad2ant2 1134 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∈ Fin) | 
| 25 |  | elrabi 3686 | . . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} → 𝑤 ∈ 𝑉) | 
| 26 | 15, 25, 17 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) | 
| 27 | 26 | nn0zd 12641 | . . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ) | 
| 28 | 13, 27 | eqeltrid 2844 | . . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → (𝐷‘𝑤) ∈ ℤ) | 
| 29 | 24, 28 | fsumzcl 15772 | . . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) | 
| 30 | 29 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) | 
| 31 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑤 → (𝐷‘𝑣) = (𝐷‘𝑤)) | 
| 32 | 31 | breq2d 5154 | . . . . . . . . . . . . 13
⊢ (𝑣 = 𝑤 → (2 ∥ (𝐷‘𝑣) ↔ 2 ∥ (𝐷‘𝑤))) | 
| 33 | 32 | notbid 318 | . . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷‘𝑣) ↔ ¬ 2 ∥ (𝐷‘𝑤))) | 
| 34 | 33 | elrab 3691 | . . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ↔ (𝑤 ∈ 𝑉 ∧ ¬ 2 ∥ (𝐷‘𝑤))) | 
| 35 | 34 | simprbi 496 | . . . . . . . . . 10
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} → ¬ 2 ∥ (𝐷‘𝑤)) | 
| 36 | 35 | adantl 481 | . . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ¬ 2 ∥ (𝐷‘𝑤)) | 
| 37 | 24, 28, 36 | sumodd 16426 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
(♯‘{𝑣 ∈
𝑉 ∣ ¬ 2 ∥
(𝐷‘𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) | 
| 38 | 37 | notbid 318 | . . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)}) ↔ ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) | 
| 39 | 38 | biimpa 476 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) | 
| 40 |  | rabfi 9304 | . . . . . . . . 9
⊢ (𝑉 ∈ Fin → {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∈ Fin) | 
| 41 | 40 | 3ad2ant2 1134 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∈ Fin) | 
| 42 |  | elrabi 3686 | . . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} → 𝑤 ∈ 𝑉) | 
| 43 | 15, 42, 17 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) | 
| 44 | 43 | nn0zd 12641 | . . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ) | 
| 45 | 13, 44 | eqeltrid 2844 | . . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → (𝐷‘𝑤) ∈ ℤ) | 
| 46 | 41, 45 | fsumzcl 15772 | . . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) | 
| 47 | 46 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) | 
| 48 | 32 | elrab 3691 | . . . . . . . . . 10
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ↔ (𝑤 ∈ 𝑉 ∧ 2 ∥ (𝐷‘𝑤))) | 
| 49 | 48 | simprbi 496 | . . . . . . . . 9
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} → 2 ∥ (𝐷‘𝑤)) | 
| 50 | 49 | adantl 481 | . . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → 2 ∥ (𝐷‘𝑤)) | 
| 51 | 41, 45, 50 | sumeven 16425 | . . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) | 
| 52 | 51 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) | 
| 53 |  | opeo 16403 | . . . . . 6
⊢
(((Σ𝑤 ∈
{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ ∧ ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) ∧ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) | 
| 54 | 30, 39, 47, 52, 53 | syl22anc 838 | . . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → ¬ 2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) | 
| 55 | 54 | ex 412 | . . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)}) → ¬ 2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)))) | 
| 56 | 55 | con4d 115 | . . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}))) | 
| 57 | 22, 56 | sylbid 240 | . 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}))) | 
| 58 | 4, 57 | mpd 15 | 1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
(♯‘{𝑣 ∈
𝑉 ∣ ¬ 2 ∥
(𝐷‘𝑣)})) |