Step | Hyp | Ref
| Expression |
1 | | finsumvtxdgeven.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | finsumvtxdgeven.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
3 | | finsumvtxdgeven.d |
. . 3
⊢ 𝐷 = (VtxDeg‘𝐺) |
4 | 1, 2, 3 | finsumvtxdgeven 27822 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤)) |
5 | | incom 4131 |
. . . . . . 7
⊢ ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) |
6 | | rabnc 4318 |
. . . . . . 7
⊢ ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) = ∅ |
7 | 5, 6 | eqtri 2766 |
. . . . . 6
⊢ ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ∅ |
8 | 7 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ∅) |
9 | | rabxm 4317 |
. . . . . . 7
⊢ 𝑉 = ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) |
10 | 9 | equncomi 4085 |
. . . . . 6
⊢ 𝑉 = ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) |
11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)})) |
12 | | simp2 1135 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin) |
13 | 3 | fveq1i 6757 |
. . . . . 6
⊢ (𝐷‘𝑤) = ((VtxDeg‘𝐺)‘𝑤) |
14 | | dmfi 9027 |
. . . . . . . . 9
⊢ (𝐼 ∈ Fin → dom 𝐼 ∈ Fin) |
15 | 14 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢ dom 𝐼 = dom 𝐼 |
17 | 1, 2, 16 | vtxdgfisnn0 27745 |
. . . . . . . 8
⊢ ((dom
𝐼 ∈ Fin ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
18 | 15, 17 | sylan 579 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
19 | 18 | nn0cnd 12225 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ) |
20 | 13, 19 | eqeltrid 2843 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → (𝐷‘𝑤) ∈ ℂ) |
21 | 8, 11, 12, 20 | fsumsplit 15381 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) = (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
22 | 21 | breq2d 5082 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)))) |
23 | | rabfi 8973 |
. . . . . . . . 9
⊢ (𝑉 ∈ Fin → {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
24 | 23 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
25 | | elrabi 3611 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} → 𝑤 ∈ 𝑉) |
26 | 15, 25, 17 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
27 | 26 | nn0zd 12353 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ) |
28 | 13, 27 | eqeltrid 2843 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → (𝐷‘𝑤) ∈ ℤ) |
29 | 24, 28 | fsumzcl 15375 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
31 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑤 → (𝐷‘𝑣) = (𝐷‘𝑤)) |
32 | 31 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑤 → (2 ∥ (𝐷‘𝑣) ↔ 2 ∥ (𝐷‘𝑤))) |
33 | 32 | notbid 317 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷‘𝑣) ↔ ¬ 2 ∥ (𝐷‘𝑤))) |
34 | 33 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ↔ (𝑤 ∈ 𝑉 ∧ ¬ 2 ∥ (𝐷‘𝑤))) |
35 | 34 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} → ¬ 2 ∥ (𝐷‘𝑤)) |
36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ¬ 2 ∥ (𝐷‘𝑤)) |
37 | 24, 28, 36 | sumodd 16025 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
(♯‘{𝑣 ∈
𝑉 ∣ ¬ 2 ∥
(𝐷‘𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
38 | 37 | notbid 317 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)}) ↔ ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
39 | 38 | biimpa 476 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) |
40 | | rabfi 8973 |
. . . . . . . . 9
⊢ (𝑉 ∈ Fin → {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
41 | 40 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
42 | | elrabi 3611 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} → 𝑤 ∈ 𝑉) |
43 | 15, 42, 17 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
44 | 43 | nn0zd 12353 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ) |
45 | 13, 44 | eqeltrid 2843 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → (𝐷‘𝑤) ∈ ℤ) |
46 | 41, 45 | fsumzcl 15375 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
47 | 46 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
48 | 32 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ↔ (𝑤 ∈ 𝑉 ∧ 2 ∥ (𝐷‘𝑤))) |
49 | 48 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} → 2 ∥ (𝐷‘𝑤)) |
50 | 49 | adantl 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → 2 ∥ (𝐷‘𝑤)) |
51 | 41, 45, 50 | sumeven 16024 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) |
52 | 51 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) |
53 | | opeo 16002 |
. . . . . 6
⊢
(((Σ𝑤 ∈
{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ ∧ ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) ∧ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
54 | 30, 39, 47, 52, 53 | syl22anc 835 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → ¬ 2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
55 | 54 | ex 412 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)}) → ¬ 2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)))) |
56 | 55 | con4d 115 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}))) |
57 | 22, 56 | sylbid 239 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}))) |
58 | 4, 57 | mpd 15 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
(♯‘{𝑣 ∈
𝑉 ∣ ¬ 2 ∥
(𝐷‘𝑣)})) |