| Step | Hyp | Ref
| Expression |
| 1 | | finsumvtxdgeven.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | finsumvtxdgeven.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | | finsumvtxdgeven.d |
. . 3
⊢ 𝐷 = (VtxDeg‘𝐺) |
| 4 | 1, 2, 3 | finsumvtxdgeven 29537 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤)) |
| 5 | | incom 4189 |
. . . . . . 7
⊢ ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) |
| 6 | | rabnc 4371 |
. . . . . . 7
⊢ ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) = ∅ |
| 7 | 5, 6 | eqtri 2759 |
. . . . . 6
⊢ ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ∅ |
| 8 | 7 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∩ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) = ∅) |
| 9 | | rabxm 4370 |
. . . . . . 7
⊢ 𝑉 = ({𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) |
| 10 | 9 | equncomi 4140 |
. . . . . 6
⊢ 𝑉 = ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∪ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)})) |
| 12 | | simp2 1137 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin) |
| 13 | 3 | fveq1i 6882 |
. . . . . 6
⊢ (𝐷‘𝑤) = ((VtxDeg‘𝐺)‘𝑤) |
| 14 | | dmfi 9352 |
. . . . . . . . 9
⊢ (𝐼 ∈ Fin → dom 𝐼 ∈ Fin) |
| 15 | 14 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin) |
| 16 | | eqid 2736 |
. . . . . . . . 9
⊢ dom 𝐼 = dom 𝐼 |
| 17 | 1, 2, 16 | vtxdgfisnn0 29460 |
. . . . . . . 8
⊢ ((dom
𝐼 ∈ Fin ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
| 18 | 15, 17 | sylan 580 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
| 19 | 18 | nn0cnd 12569 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ) |
| 20 | 13, 19 | eqeltrid 2839 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ 𝑉) → (𝐷‘𝑤) ∈ ℂ) |
| 21 | 8, 11, 12, 20 | fsumsplit 15762 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) = (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
| 22 | 21 | breq2d 5136 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)))) |
| 23 | | rabfi 9280 |
. . . . . . . . 9
⊢ (𝑉 ∈ Fin → {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
| 24 | 23 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
| 25 | | elrabi 3671 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} → 𝑤 ∈ 𝑉) |
| 26 | 15, 25, 17 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
| 27 | 26 | nn0zd 12619 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ) |
| 28 | 13, 27 | eqeltrid 2839 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → (𝐷‘𝑤) ∈ ℤ) |
| 29 | 24, 28 | fsumzcl 15756 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
| 31 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑤 → (𝐷‘𝑣) = (𝐷‘𝑤)) |
| 32 | 31 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑤 → (2 ∥ (𝐷‘𝑣) ↔ 2 ∥ (𝐷‘𝑤))) |
| 33 | 32 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷‘𝑣) ↔ ¬ 2 ∥ (𝐷‘𝑤))) |
| 34 | 33 | elrab 3676 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} ↔ (𝑤 ∈ 𝑉 ∧ ¬ 2 ∥ (𝐷‘𝑤))) |
| 35 | 34 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} → ¬ 2 ∥ (𝐷‘𝑤)) |
| 36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}) → ¬ 2 ∥ (𝐷‘𝑤)) |
| 37 | 24, 28, 36 | sumodd 16412 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
(♯‘{𝑣 ∈
𝑉 ∣ ¬ 2 ∥
(𝐷‘𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
| 38 | 37 | notbid 318 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)}) ↔ ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
| 39 | 38 | biimpa 476 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) |
| 40 | | rabfi 9280 |
. . . . . . . . 9
⊢ (𝑉 ∈ Fin → {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
| 41 | 40 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ∈ Fin) |
| 42 | | elrabi 3671 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} → 𝑤 ∈ 𝑉) |
| 43 | 15, 42, 17 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈
ℕ0) |
| 44 | 43 | nn0zd 12619 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ) |
| 45 | 13, 44 | eqeltrid 2839 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → (𝐷‘𝑤) ∈ ℤ) |
| 46 | 41, 45 | fsumzcl 15756 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
| 47 | 46 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ) |
| 48 | 32 | elrab 3676 |
. . . . . . . . . 10
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} ↔ (𝑤 ∈ 𝑉 ∧ 2 ∥ (𝐷‘𝑤))) |
| 49 | 48 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} → 2 ∥ (𝐷‘𝑤)) |
| 50 | 49 | adantl 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)}) → 2 ∥ (𝐷‘𝑤)) |
| 51 | 41, 45, 50 | sumeven 16411 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) |
| 52 | 51 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) |
| 53 | | opeo 16389 |
. . . . . 6
⊢
(((Σ𝑤 ∈
{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ ∧ ¬ 2 ∥
Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) ∧ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
| 54 | 30, 39, 47, 52, 53 | syl22anc 838 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)})) → ¬ 2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤))) |
| 55 | 54 | ex 412 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2
∥ (♯‘{𝑣
∈ 𝑉 ∣ ¬ 2
∥ (𝐷‘𝑣)}) → ¬ 2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)))) |
| 56 | 55 | con4d 115 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
(Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤) + Σ𝑤 ∈ {𝑣 ∈ 𝑉 ∣ 2 ∥ (𝐷‘𝑣)} (𝐷‘𝑤)) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}))) |
| 57 | 22, 56 | sylbid 240 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥
Σ𝑤 ∈ 𝑉 (𝐷‘𝑤) → 2 ∥ (♯‘{𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ (𝐷‘𝑣)}))) |
| 58 | 4, 57 | mpd 15 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥
(♯‘{𝑣 ∈
𝑉 ∣ ¬ 2 ∥
(𝐷‘𝑣)})) |