MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgoddnumeven Structured version   Visualization version   GIF version

Theorem vtxdgoddnumeven 29532
Description: The number of vertices of odd degree is even in a finite pseudograph of finite size. Proposition 1.2.1 in [Diestel] p. 5. See also remark about equation (2) in section I.1 in [Bollobas] p. 4. (Contributed by AV, 22-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdgeven.v 𝑉 = (Vtx‘𝐺)
finsumvtxdgeven.i 𝐼 = (iEdg‘𝐺)
finsumvtxdgeven.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdgoddnumeven ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑣,𝐷   𝑣,𝐼

Proof of Theorem vtxdgoddnumeven
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 finsumvtxdgeven.v . . 3 𝑉 = (Vtx‘𝐺)
2 finsumvtxdgeven.i . . 3 𝐼 = (iEdg‘𝐺)
3 finsumvtxdgeven.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3finsumvtxdgeven 29531 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤𝑉 (𝐷𝑤))
5 incom 4156 . . . . . . 7 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
6 rabnc 4338 . . . . . . 7 ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) = ∅
75, 6eqtri 2754 . . . . . 6 ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅
87a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∩ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) = ∅)
9 rabxm 4337 . . . . . . 7 𝑉 = ({𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})
109equncomi 4107 . . . . . 6 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)})
1110a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 = ({𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∪ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}))
12 simp2 1137 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 𝑉 ∈ Fin)
133fveq1i 6823 . . . . . 6 (𝐷𝑤) = ((VtxDeg‘𝐺)‘𝑤)
14 dmfi 9219 . . . . . . . . 9 (𝐼 ∈ Fin → dom 𝐼 ∈ Fin)
15143ad2ant3 1135 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → dom 𝐼 ∈ Fin)
16 eqid 2731 . . . . . . . . 9 dom 𝐼 = dom 𝐼
171, 2, 16vtxdgfisnn0 29454 . . . . . . . 8 ((dom 𝐼 ∈ Fin ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1815, 17sylan 580 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
1918nn0cnd 12444 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℂ)
2013, 19eqeltrid 2835 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤𝑉) → (𝐷𝑤) ∈ ℂ)
218, 11, 12, 20fsumsplit 15648 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤𝑉 (𝐷𝑤) = (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
2221breq2d 5101 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) ↔ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
23 rabfi 9155 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
24233ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ∈ Fin)
25 elrabi 3638 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
2615, 25, 17syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
2726nn0zd 12494 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
2813, 27eqeltrid 2835 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
2924, 28fsumzcl 15642 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
3029adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
31 fveq2 6822 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐷𝑣) = (𝐷𝑤))
3231breq2d 5101 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → (2 ∥ (𝐷𝑣) ↔ 2 ∥ (𝐷𝑤)))
3332notbid 318 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (¬ 2 ∥ (𝐷𝑣) ↔ ¬ 2 ∥ (𝐷𝑤)))
3433elrab 3642 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ ¬ 2 ∥ (𝐷𝑤)))
3534simprbi 496 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} → ¬ 2 ∥ (𝐷𝑤))
3635adantl 481 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (𝐷𝑤))
3724, 28, 36sumodd 16299 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3837notbid 318 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) ↔ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
3938biimpa 476 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
40 rabfi 9155 . . . . . . . . 9 (𝑉 ∈ Fin → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
41403ad2ant2 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ∈ Fin)
42 elrabi 3638 . . . . . . . . . . 11 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 𝑤𝑉)
4315, 42, 17syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℕ0)
4443nn0zd 12494 . . . . . . . . 9 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → ((VtxDeg‘𝐺)‘𝑤) ∈ ℤ)
4513, 44eqeltrid 2835 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → (𝐷𝑤) ∈ ℤ)
4641, 45fsumzcl 15642 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4746adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ)
4832elrab 3642 . . . . . . . . . 10 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} ↔ (𝑤𝑉 ∧ 2 ∥ (𝐷𝑤)))
4948simprbi 496 . . . . . . . . 9 (𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} → 2 ∥ (𝐷𝑤))
5049adantl 481 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ 𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)}) → 2 ∥ (𝐷𝑤))
5141, 45, 50sumeven 16298 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
5251adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))
53 opeo 16276 . . . . . 6 (((Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ ¬ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) ∧ (Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤) ∈ ℤ ∧ 2 ∥ Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5430, 39, 47, 52, 53syl22anc 838 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) ∧ ¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)))
5554ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (¬ 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}) → ¬ 2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤))))
5655con4d 115 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ (Σ𝑤 ∈ {𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)} (𝐷𝑤) + Σ𝑤 ∈ {𝑣𝑉 ∣ 2 ∥ (𝐷𝑣)} (𝐷𝑤)) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
5722, 56sylbid 240 . 2 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → (2 ∥ Σ𝑤𝑉 (𝐷𝑤) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)})))
584, 57mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin) → 2 ∥ (♯‘{𝑣𝑉 ∣ ¬ 2 ∥ (𝐷𝑣)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  cun 3895  cin 3896  c0 4280   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004   + caddc 11009  2c2 12180  0cn0 12381  cz 12468  chash 14237  Σcsu 15593  cdvds 16163  Vtxcvtx 28974  iEdgciedg 28975  UPGraphcupgr 29058  VtxDegcvtxdg 29444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-xadd 13012  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-vtx 28976  df-iedg 28977  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-vtxdg 29445
This theorem is referenced by:  fusgrvtxdgonume  29533
  Copyright terms: Public domain W3C validator