Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   GIF version

Theorem hasheuni 34082
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15799. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni ((𝐴𝑉Disj 𝑥𝐴 𝑥) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 5091 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝑥
2 nfv 1914 . . . . . . . 8 𝑥 𝐴 ∈ Fin
3 nfv 1914 . . . . . . . 8 𝑥 𝐴 ⊆ Fin
41, 2, 3nf3an 1901 . . . . . . 7 𝑥(Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin)
5 simp2 1137 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 simp3 1138 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ Fin)
7 simp1 1136 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑥𝐴 𝑥)
84, 5, 6, 7hashunif 32738 . . . . . 6 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑥𝐴 (♯‘𝑥))
9 simpl 482 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
10 dfss3 3938 . . . . . . . . . . 11 (𝐴 ⊆ Fin ↔ ∀𝑥𝐴 𝑥 ∈ Fin)
11 hashcl 14328 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
12 nn0re 12458 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ ℕ0 → (♯‘𝑥) ∈ ℝ)
13 nn0ge0 12474 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ ℕ0 → 0 ≤ (♯‘𝑥))
14 elrege0 13422 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ (0[,)+∞) ↔ ((♯‘𝑥) ∈ ℝ ∧ 0 ≤ (♯‘𝑥)))
1512, 13, 14sylanbrc 583 . . . . . . . . . . . . 13 ((♯‘𝑥) ∈ ℕ0 → (♯‘𝑥) ∈ (0[,)+∞))
1611, 15syl 17 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (♯‘𝑥) ∈ (0[,)+∞))
1716ralimi 3067 . . . . . . . . . . 11 (∀𝑥𝐴 𝑥 ∈ Fin → ∀𝑥𝐴 (♯‘𝑥) ∈ (0[,)+∞))
1810, 17sylbi 217 . . . . . . . . . 10 (𝐴 ⊆ Fin → ∀𝑥𝐴 (♯‘𝑥) ∈ (0[,)+∞))
1918r19.21bi 3230 . . . . . . . . 9 ((𝐴 ⊆ Fin ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,)+∞))
2019adantll 714 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,)+∞))
219, 20esumpfinval 34072 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = Σ𝑥𝐴 (♯‘𝑥))
22213adant1 1130 . . . . . 6 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = Σ𝑥𝐴 (♯‘𝑥))
238, 22eqtr4d 2768 . . . . 5 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
24233adant1l 1177 . . . 4 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
25243expa 1118 . . 3 ((((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
26 uniexg 7719 . . . . . . . 8 (𝐴𝑉 𝐴 ∈ V)
2710notbii 320 . . . . . . . . . 10 𝐴 ⊆ Fin ↔ ¬ ∀𝑥𝐴 𝑥 ∈ Fin)
28 rexnal 3083 . . . . . . . . . 10 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin ↔ ¬ ∀𝑥𝐴 𝑥 ∈ Fin)
2927, 28bitr4i 278 . . . . . . . . 9 𝐴 ⊆ Fin ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ Fin)
30 elssuni 4904 . . . . . . . . . . 11 (𝑥𝐴𝑥 𝐴)
31 ssfi 9143 . . . . . . . . . . . . 13 (( 𝐴 ∈ Fin ∧ 𝑥 𝐴) → 𝑥 ∈ Fin)
3231expcom 413 . . . . . . . . . . . 12 (𝑥 𝐴 → ( 𝐴 ∈ Fin → 𝑥 ∈ Fin))
3332con3d 152 . . . . . . . . . . 11 (𝑥 𝐴 → (¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin))
3430, 33syl 17 . . . . . . . . . 10 (𝑥𝐴 → (¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin))
3534rexlimiv 3128 . . . . . . . . 9 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin)
3629, 35sylbi 217 . . . . . . . 8 𝐴 ⊆ Fin → ¬ 𝐴 ∈ Fin)
37 hashinf 14307 . . . . . . . 8 (( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = +∞)
3826, 36, 37syl2an 596 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = +∞)
39 vex 3454 . . . . . . . . . . 11 𝑥 ∈ V
40 hashinf 14307 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ Fin) → (♯‘𝑥) = +∞)
4139, 40mpan 690 . . . . . . . . . 10 𝑥 ∈ Fin → (♯‘𝑥) = +∞)
4241reximi 3068 . . . . . . . . 9 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin → ∃𝑥𝐴 (♯‘𝑥) = +∞)
4329, 42sylbi 217 . . . . . . . 8 𝐴 ⊆ Fin → ∃𝑥𝐴 (♯‘𝑥) = +∞)
44 nfv 1914 . . . . . . . . . 10 𝑥 𝐴𝑉
45 nfre1 3263 . . . . . . . . . 10 𝑥𝑥𝐴 (♯‘𝑥) = +∞
4644, 45nfan 1899 . . . . . . . . 9 𝑥(𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞)
47 simpl 482 . . . . . . . . 9 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → 𝐴𝑉)
48 hashf2 34081 . . . . . . . . . . 11 ♯:V⟶(0[,]+∞)
49 ffvelcdm 7056 . . . . . . . . . . 11 ((♯:V⟶(0[,]+∞) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (0[,]+∞))
5048, 39, 49mp2an 692 . . . . . . . . . 10 (♯‘𝑥) ∈ (0[,]+∞)
5150a1i 11 . . . . . . . . 9 (((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,]+∞))
52 simpr 484 . . . . . . . . 9 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → ∃𝑥𝐴 (♯‘𝑥) = +∞)
5346, 47, 51, 52esumpinfval 34070 . . . . . . . 8 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
5443, 53sylan2 593 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
5538, 54eqtr4d 2768 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
56553adant2 1131 . . . . 5 ((𝐴𝑉𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
57563adant1r 1178 . . . 4 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
58573expa 1118 . . 3 ((((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
5925, 58pm2.61dan 812 . 2 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
60 pwfi 9275 . . . . . . 7 ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
61 pwuni 4912 . . . . . . . 8 𝐴 ⊆ 𝒫 𝐴
62 ssfi 9143 . . . . . . . 8 ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 ∈ Fin)
6361, 62mpan2 691 . . . . . . 7 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
6460, 63sylbi 217 . . . . . 6 ( 𝐴 ∈ Fin → 𝐴 ∈ Fin)
6564con3i 154 . . . . 5 𝐴 ∈ Fin → ¬ 𝐴 ∈ Fin)
6626, 65, 37syl2an 596 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = +∞)
67 nftru 1804 . . . . . . . . 9 𝑥
68 unrab 4281 . . . . . . . . . . 11 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)}
69 exmid 894 . . . . . . . . . . . . 13 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)
7069rgenw 3049 . . . . . . . . . . . 12 𝑥𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)
71 rabid2 3442 . . . . . . . . . . . 12 (𝐴 = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} ↔ ∀𝑥𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0))
7270, 71mpbir 231 . . . . . . . . . . 11 𝐴 = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)}
7368, 72eqtr4i 2756 . . . . . . . . . 10 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴
7473a1i 11 . . . . . . . . 9 (⊤ → ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴)
7567, 74esumeq1d 34032 . . . . . . . 8 (⊤ → Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥𝐴(♯‘𝑥))
7675mptru 1547 . . . . . . 7 Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥𝐴(♯‘𝑥)
77 nfrab1 3429 . . . . . . . 8 𝑥{𝑥𝐴 ∣ (♯‘𝑥) = 0}
78 nfrab1 3429 . . . . . . . 8 𝑥{𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}
79 rabexg 5295 . . . . . . . 8 (𝐴𝑉 → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V)
80 rabexg 5295 . . . . . . . 8 (𝐴𝑉 → {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ V)
81 rabnc 4357 . . . . . . . . 9 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = ∅
8281a1i 11 . . . . . . . 8 (𝐴𝑉 → ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = ∅)
8350a1i 11 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
8450a1i 11 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 34050 . . . . . . 7 (𝐴𝑉 → Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
8676, 85eqtr3id 2779 . . . . . 6 (𝐴𝑉 → Σ*𝑥𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
8786adantr 480 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
88 nfv 1914 . . . . . . 7 𝑥(𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin)
8980adantr 480 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ V)
90 simpr 484 . . . . . . . . 9 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
91 dfrab3 4285 . . . . . . . . . . . 12 {𝑥𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0})
92 hasheq0 14335 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
9493abbii 2797 . . . . . . . . . . . . . 14 {𝑥 ∣ (♯‘𝑥) = 0} = {𝑥𝑥 = ∅}
95 df-sn 4593 . . . . . . . . . . . . . 14 {∅} = {𝑥𝑥 = ∅}
9694, 95eqtr4i 2756 . . . . . . . . . . . . 13 {𝑥 ∣ (♯‘𝑥) = 0} = {∅}
9796ineq2i 4183 . . . . . . . . . . . 12 (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) = (𝐴 ∩ {∅})
9891, 97eqtri 2753 . . . . . . . . . . 11 {𝑥𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {∅})
99 snfi 9017 . . . . . . . . . . . 12 {∅} ∈ Fin
100 inss2 4204 . . . . . . . . . . . 12 (𝐴 ∩ {∅}) ⊆ {∅}
101 ssfi 9143 . . . . . . . . . . . 12 (({∅} ∈ Fin ∧ (𝐴 ∩ {∅}) ⊆ {∅}) → (𝐴 ∩ {∅}) ∈ Fin)
10299, 100, 101mp2an 692 . . . . . . . . . . 11 (𝐴 ∩ {∅}) ∈ Fin
10398, 102eqeltri 2825 . . . . . . . . . 10 {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin
104103a1i 11 . . . . . . . . 9 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin)
105 difinf 9267 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) → ¬ (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin)
10690, 104, 105syl2anc 584 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin)
107 notrab 4288 . . . . . . . . 9 (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) = {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}
108107eleq1i 2820 . . . . . . . 8 ((𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin ↔ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ Fin)
109106, 108sylnib 328 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ Fin)
11050a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
11139a1i 11 . . . . . . . 8 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ V)
112 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})
113 rabid 3430 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ↔ (𝑥𝐴 ∧ ¬ (♯‘𝑥) = 0))
114112, 113sylib 218 . . . . . . . . . 10 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (𝑥𝐴 ∧ ¬ (♯‘𝑥) = 0))
115114simprd 495 . . . . . . . . 9 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → ¬ (♯‘𝑥) = 0)
11693biimpri 228 . . . . . . . . . 10 (𝑥 = ∅ → (♯‘𝑥) = 0)
117116necon3bi 2952 . . . . . . . . 9 (¬ (♯‘𝑥) = 0 → 𝑥 ≠ ∅)
118115, 117syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ≠ ∅)
119 hashge1 14361 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → 1 ≤ (♯‘𝑥))
120111, 118, 119syl2anc 584 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 1 ≤ (♯‘𝑥))
121 1xr 11240 . . . . . . . 8 1 ∈ ℝ*
122121a1i 11 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 1 ∈ ℝ*)
123 0lt1 11707 . . . . . . . 8 0 < 1
124123a1i 11 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 0 < 1)
12588, 78, 89, 109, 110, 120, 122, 124esumpinfsum 34074 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥) = +∞)
126125oveq2d 7406 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞))
127 iccssxr 13398 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
12879adantr 480 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V)
12950a1i 11 . . . . . . . . 9 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
130129ralrimiva 3126 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ∀𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
13177esumcl 34027 . . . . . . . 8 (({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V ∧ ∀𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
132128, 130, 131syl2anc 584 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
133127, 132sselid 3947 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ*)
134 xrge0neqmnf 13420 . . . . . . 7 *𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞)
135132, 134syl 17 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞)
136 xaddpnf1 13193 . . . . . 6 ((Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ* ∧ Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞) = +∞)
137133, 135, 136syl2anc 584 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞) = +∞)
13887, 126, 1373eqtrd 2769 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
13966, 138eqtr4d 2768 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
140139adantlr 715 . 2 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
14159, 140pm2.61dan 812 1 ((𝐴𝑉Disj 𝑥𝐴 𝑥) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874  Disj wdisj 5077   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cr 11074  0cc0 11075  1c1 11076  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  0cn0 12449   +𝑒 cxad 13077  [,)cico 13315  [,]cicc 13316  chash 14302  Σcsu 15659  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025
This theorem is referenced by:  cntmeas  34223
  Copyright terms: Public domain W3C validator