Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   GIF version

Theorem hasheuni 34116
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15842. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni ((𝐴𝑉Disj 𝑥𝐴 𝑥) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 5100 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝑥
2 nfv 1914 . . . . . . . 8 𝑥 𝐴 ∈ Fin
3 nfv 1914 . . . . . . . 8 𝑥 𝐴 ⊆ Fin
41, 2, 3nf3an 1901 . . . . . . 7 𝑥(Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin)
5 simp2 1137 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 simp3 1138 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ Fin)
7 simp1 1136 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑥𝐴 𝑥)
84, 5, 6, 7hashunif 32785 . . . . . 6 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑥𝐴 (♯‘𝑥))
9 simpl 482 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
10 dfss3 3947 . . . . . . . . . . 11 (𝐴 ⊆ Fin ↔ ∀𝑥𝐴 𝑥 ∈ Fin)
11 hashcl 14374 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
12 nn0re 12510 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ ℕ0 → (♯‘𝑥) ∈ ℝ)
13 nn0ge0 12526 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ ℕ0 → 0 ≤ (♯‘𝑥))
14 elrege0 13471 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ (0[,)+∞) ↔ ((♯‘𝑥) ∈ ℝ ∧ 0 ≤ (♯‘𝑥)))
1512, 13, 14sylanbrc 583 . . . . . . . . . . . . 13 ((♯‘𝑥) ∈ ℕ0 → (♯‘𝑥) ∈ (0[,)+∞))
1611, 15syl 17 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (♯‘𝑥) ∈ (0[,)+∞))
1716ralimi 3073 . . . . . . . . . . 11 (∀𝑥𝐴 𝑥 ∈ Fin → ∀𝑥𝐴 (♯‘𝑥) ∈ (0[,)+∞))
1810, 17sylbi 217 . . . . . . . . . 10 (𝐴 ⊆ Fin → ∀𝑥𝐴 (♯‘𝑥) ∈ (0[,)+∞))
1918r19.21bi 3234 . . . . . . . . 9 ((𝐴 ⊆ Fin ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,)+∞))
2019adantll 714 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,)+∞))
219, 20esumpfinval 34106 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = Σ𝑥𝐴 (♯‘𝑥))
22213adant1 1130 . . . . . 6 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = Σ𝑥𝐴 (♯‘𝑥))
238, 22eqtr4d 2773 . . . . 5 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
24233adant1l 1177 . . . 4 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
25243expa 1118 . . 3 ((((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
26 uniexg 7734 . . . . . . . 8 (𝐴𝑉 𝐴 ∈ V)
2710notbii 320 . . . . . . . . . 10 𝐴 ⊆ Fin ↔ ¬ ∀𝑥𝐴 𝑥 ∈ Fin)
28 rexnal 3089 . . . . . . . . . 10 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin ↔ ¬ ∀𝑥𝐴 𝑥 ∈ Fin)
2927, 28bitr4i 278 . . . . . . . . 9 𝐴 ⊆ Fin ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ Fin)
30 elssuni 4913 . . . . . . . . . . 11 (𝑥𝐴𝑥 𝐴)
31 ssfi 9187 . . . . . . . . . . . . 13 (( 𝐴 ∈ Fin ∧ 𝑥 𝐴) → 𝑥 ∈ Fin)
3231expcom 413 . . . . . . . . . . . 12 (𝑥 𝐴 → ( 𝐴 ∈ Fin → 𝑥 ∈ Fin))
3332con3d 152 . . . . . . . . . . 11 (𝑥 𝐴 → (¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin))
3430, 33syl 17 . . . . . . . . . 10 (𝑥𝐴 → (¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin))
3534rexlimiv 3134 . . . . . . . . 9 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin)
3629, 35sylbi 217 . . . . . . . 8 𝐴 ⊆ Fin → ¬ 𝐴 ∈ Fin)
37 hashinf 14353 . . . . . . . 8 (( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = +∞)
3826, 36, 37syl2an 596 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = +∞)
39 vex 3463 . . . . . . . . . . 11 𝑥 ∈ V
40 hashinf 14353 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ Fin) → (♯‘𝑥) = +∞)
4139, 40mpan 690 . . . . . . . . . 10 𝑥 ∈ Fin → (♯‘𝑥) = +∞)
4241reximi 3074 . . . . . . . . 9 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin → ∃𝑥𝐴 (♯‘𝑥) = +∞)
4329, 42sylbi 217 . . . . . . . 8 𝐴 ⊆ Fin → ∃𝑥𝐴 (♯‘𝑥) = +∞)
44 nfv 1914 . . . . . . . . . 10 𝑥 𝐴𝑉
45 nfre1 3267 . . . . . . . . . 10 𝑥𝑥𝐴 (♯‘𝑥) = +∞
4644, 45nfan 1899 . . . . . . . . 9 𝑥(𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞)
47 simpl 482 . . . . . . . . 9 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → 𝐴𝑉)
48 hashf2 34115 . . . . . . . . . . 11 ♯:V⟶(0[,]+∞)
49 ffvelcdm 7071 . . . . . . . . . . 11 ((♯:V⟶(0[,]+∞) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (0[,]+∞))
5048, 39, 49mp2an 692 . . . . . . . . . 10 (♯‘𝑥) ∈ (0[,]+∞)
5150a1i 11 . . . . . . . . 9 (((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,]+∞))
52 simpr 484 . . . . . . . . 9 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → ∃𝑥𝐴 (♯‘𝑥) = +∞)
5346, 47, 51, 52esumpinfval 34104 . . . . . . . 8 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
5443, 53sylan2 593 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
5538, 54eqtr4d 2773 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
56553adant2 1131 . . . . 5 ((𝐴𝑉𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
57563adant1r 1178 . . . 4 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
58573expa 1118 . . 3 ((((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
5925, 58pm2.61dan 812 . 2 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
60 pwfi 9329 . . . . . . 7 ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
61 pwuni 4921 . . . . . . . 8 𝐴 ⊆ 𝒫 𝐴
62 ssfi 9187 . . . . . . . 8 ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 ∈ Fin)
6361, 62mpan2 691 . . . . . . 7 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
6460, 63sylbi 217 . . . . . 6 ( 𝐴 ∈ Fin → 𝐴 ∈ Fin)
6564con3i 154 . . . . 5 𝐴 ∈ Fin → ¬ 𝐴 ∈ Fin)
6626, 65, 37syl2an 596 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = +∞)
67 nftru 1804 . . . . . . . . 9 𝑥
68 unrab 4290 . . . . . . . . . . 11 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)}
69 exmid 894 . . . . . . . . . . . . 13 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)
7069rgenw 3055 . . . . . . . . . . . 12 𝑥𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)
71 rabid2 3449 . . . . . . . . . . . 12 (𝐴 = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} ↔ ∀𝑥𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0))
7270, 71mpbir 231 . . . . . . . . . . 11 𝐴 = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)}
7368, 72eqtr4i 2761 . . . . . . . . . 10 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴
7473a1i 11 . . . . . . . . 9 (⊤ → ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴)
7567, 74esumeq1d 34066 . . . . . . . 8 (⊤ → Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥𝐴(♯‘𝑥))
7675mptru 1547 . . . . . . 7 Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥𝐴(♯‘𝑥)
77 nfrab1 3436 . . . . . . . 8 𝑥{𝑥𝐴 ∣ (♯‘𝑥) = 0}
78 nfrab1 3436 . . . . . . . 8 𝑥{𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}
79 rabexg 5307 . . . . . . . 8 (𝐴𝑉 → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V)
80 rabexg 5307 . . . . . . . 8 (𝐴𝑉 → {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ V)
81 rabnc 4366 . . . . . . . . 9 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = ∅
8281a1i 11 . . . . . . . 8 (𝐴𝑉 → ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = ∅)
8350a1i 11 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
8450a1i 11 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 34084 . . . . . . 7 (𝐴𝑉 → Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
8676, 85eqtr3id 2784 . . . . . 6 (𝐴𝑉 → Σ*𝑥𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
8786adantr 480 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
88 nfv 1914 . . . . . . 7 𝑥(𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin)
8980adantr 480 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ V)
90 simpr 484 . . . . . . . . 9 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
91 dfrab3 4294 . . . . . . . . . . . 12 {𝑥𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0})
92 hasheq0 14381 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
9493abbii 2802 . . . . . . . . . . . . . 14 {𝑥 ∣ (♯‘𝑥) = 0} = {𝑥𝑥 = ∅}
95 df-sn 4602 . . . . . . . . . . . . . 14 {∅} = {𝑥𝑥 = ∅}
9694, 95eqtr4i 2761 . . . . . . . . . . . . 13 {𝑥 ∣ (♯‘𝑥) = 0} = {∅}
9796ineq2i 4192 . . . . . . . . . . . 12 (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) = (𝐴 ∩ {∅})
9891, 97eqtri 2758 . . . . . . . . . . 11 {𝑥𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {∅})
99 snfi 9057 . . . . . . . . . . . 12 {∅} ∈ Fin
100 inss2 4213 . . . . . . . . . . . 12 (𝐴 ∩ {∅}) ⊆ {∅}
101 ssfi 9187 . . . . . . . . . . . 12 (({∅} ∈ Fin ∧ (𝐴 ∩ {∅}) ⊆ {∅}) → (𝐴 ∩ {∅}) ∈ Fin)
10299, 100, 101mp2an 692 . . . . . . . . . . 11 (𝐴 ∩ {∅}) ∈ Fin
10398, 102eqeltri 2830 . . . . . . . . . 10 {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin
104103a1i 11 . . . . . . . . 9 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin)
105 difinf 9321 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) → ¬ (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin)
10690, 104, 105syl2anc 584 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin)
107 notrab 4297 . . . . . . . . 9 (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) = {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}
108107eleq1i 2825 . . . . . . . 8 ((𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin ↔ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ Fin)
109106, 108sylnib 328 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ Fin)
11050a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
11139a1i 11 . . . . . . . 8 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ V)
112 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})
113 rabid 3437 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ↔ (𝑥𝐴 ∧ ¬ (♯‘𝑥) = 0))
114112, 113sylib 218 . . . . . . . . . 10 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (𝑥𝐴 ∧ ¬ (♯‘𝑥) = 0))
115114simprd 495 . . . . . . . . 9 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → ¬ (♯‘𝑥) = 0)
11693biimpri 228 . . . . . . . . . 10 (𝑥 = ∅ → (♯‘𝑥) = 0)
117116necon3bi 2958 . . . . . . . . 9 (¬ (♯‘𝑥) = 0 → 𝑥 ≠ ∅)
118115, 117syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ≠ ∅)
119 hashge1 14407 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → 1 ≤ (♯‘𝑥))
120111, 118, 119syl2anc 584 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 1 ≤ (♯‘𝑥))
121 1xr 11294 . . . . . . . 8 1 ∈ ℝ*
122121a1i 11 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 1 ∈ ℝ*)
123 0lt1 11759 . . . . . . . 8 0 < 1
124123a1i 11 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 0 < 1)
12588, 78, 89, 109, 110, 120, 122, 124esumpinfsum 34108 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥) = +∞)
126125oveq2d 7421 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞))
127 iccssxr 13447 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
12879adantr 480 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V)
12950a1i 11 . . . . . . . . 9 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
130129ralrimiva 3132 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ∀𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
13177esumcl 34061 . . . . . . . 8 (({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V ∧ ∀𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
132128, 130, 131syl2anc 584 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
133127, 132sselid 3956 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ*)
134 xrge0neqmnf 13469 . . . . . . 7 *𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞)
135132, 134syl 17 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞)
136 xaddpnf1 13242 . . . . . 6 ((Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ* ∧ Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞) = +∞)
137133, 135, 136syl2anc 584 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞) = +∞)
13887, 126, 1373eqtrd 2774 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
13966, 138eqtr4d 2773 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
140139adantlr 715 . 2 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
14159, 140pm2.61dan 812 1 ((𝐴𝑉Disj 𝑥𝐴 𝑥) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883  Disj wdisj 5086   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  Fincfn 8959  cr 11128  0cc0 11129  1c1 11130  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270  0cn0 12501   +𝑒 cxad 13126  [,)cico 13364  [,]cicc 13365  chash 14348  Σcsu 15702  Σ*cesum 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-ordt 17515  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-abv 20769  df-lmod 20819  df-scaf 20820  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tmd 24010  df-tgp 24011  df-tsms 24065  df-trg 24098  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522  df-nrg 24524  df-nlm 24525  df-ii 24821  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-esum 34059
This theorem is referenced by:  cntmeas  34257
  Copyright terms: Public domain W3C validator