Proof of Theorem hasheuni
Step | Hyp | Ref
| Expression |
1 | | nfdisj1 5049 |
. . . . . . . 8
⊢
Ⅎ𝑥Disj
𝑥 ∈ 𝐴 𝑥 |
2 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐴 ∈ Fin |
3 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐴 ⊆ Fin |
4 | 1, 2, 3 | nf3an 1905 |
. . . . . . 7
⊢
Ⅎ𝑥(Disj
𝑥 ∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) |
5 | | simp2 1135 |
. . . . . . 7
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
6 | | simp3 1136 |
. . . . . . 7
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ Fin) |
7 | | simp1 1134 |
. . . . . . 7
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑥 ∈ 𝐴 𝑥) |
8 | 4, 5, 6, 7 | hashunif 31028 |
. . . . . 6
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
9 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
10 | | dfss3 3905 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ Fin ↔
∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) |
11 | | hashcl 13999 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
ℕ0) |
12 | | nn0re 12172 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥)
∈ ℕ0 → (♯‘𝑥) ∈ ℝ) |
13 | | nn0ge0 12188 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥)
∈ ℕ0 → 0 ≤ (♯‘𝑥)) |
14 | | elrege0 13115 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥)
∈ (0[,)+∞) ↔ ((♯‘𝑥) ∈ ℝ ∧ 0 ≤
(♯‘𝑥))) |
15 | 12, 13, 14 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑥)
∈ ℕ0 → (♯‘𝑥) ∈ (0[,)+∞)) |
16 | 11, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
(0[,)+∞)) |
17 | 16 | ralimi 3086 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝑥 ∈ Fin → ∀𝑥 ∈ 𝐴 (♯‘𝑥) ∈ (0[,)+∞)) |
18 | 10, 17 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ Fin →
∀𝑥 ∈ 𝐴 (♯‘𝑥) ∈
(0[,)+∞)) |
19 | 18 | r19.21bi 3132 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ Fin ∧ 𝑥 ∈ 𝐴) → (♯‘𝑥) ∈ (0[,)+∞)) |
20 | 19 | adantll 710 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑥 ∈ 𝐴) → (♯‘𝑥) ∈ (0[,)+∞)) |
21 | 9, 20 | esumpfinval 31943 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ*𝑥 ∈
𝐴(♯‘𝑥) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
22 | 21 | 3adant1 1128 |
. . . . . 6
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ*𝑥 ∈
𝐴(♯‘𝑥) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
23 | 8, 22 | eqtr4d 2781 |
. . . . 5
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
24 | 23 | 3adant1l 1174 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
25 | 24 | 3expa 1116 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
26 | | uniexg 7571 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
27 | 10 | notbii 319 |
. . . . . . . . . 10
⊢ (¬
𝐴 ⊆ Fin ↔ ¬
∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) |
28 | | rexnal 3165 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ Fin ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) |
29 | 27, 28 | bitr4i 277 |
. . . . . . . . 9
⊢ (¬
𝐴 ⊆ Fin ↔
∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ Fin) |
30 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) |
31 | | ssfi 8918 |
. . . . . . . . . . . . 13
⊢ ((∪ 𝐴
∈ Fin ∧ 𝑥 ⊆
∪ 𝐴) → 𝑥 ∈ Fin) |
32 | 31 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ ∪ 𝐴
→ (∪ 𝐴 ∈ Fin → 𝑥 ∈ Fin)) |
33 | 32 | con3d 152 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ ∪ 𝐴
→ (¬ 𝑥 ∈ Fin
→ ¬ ∪ 𝐴 ∈ Fin)) |
34 | 30, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ Fin → ¬ ∪ 𝐴
∈ Fin)) |
35 | 34 | rexlimiv 3208 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ Fin → ¬ ∪ 𝐴
∈ Fin) |
36 | 29, 35 | sylbi 216 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ Fin → ¬
∪ 𝐴 ∈ Fin) |
37 | | hashinf 13977 |
. . . . . . . 8
⊢ ((∪ 𝐴
∈ V ∧ ¬ ∪ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
+∞) |
38 | 26, 36, 37 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
+∞) |
39 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
40 | | hashinf 13977 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ Fin) →
(♯‘𝑥) =
+∞) |
41 | 39, 40 | mpan 686 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ Fin →
(♯‘𝑥) =
+∞) |
42 | 41 | reximi 3174 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ Fin → ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
43 | 29, 42 | sylbi 216 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ Fin →
∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
44 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
45 | | nfre1 3234 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞ |
46 | 44, 45 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
47 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) → 𝐴 ∈ 𝑉) |
48 | | hashf2 31952 |
. . . . . . . . . . 11
⊢
♯:V⟶(0[,]+∞) |
49 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢
((♯:V⟶(0[,]+∞) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈
(0[,]+∞)) |
50 | 48, 39, 49 | mp2an 688 |
. . . . . . . . . 10
⊢
(♯‘𝑥)
∈ (0[,]+∞) |
51 | 50 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) ∧ 𝑥 ∈ 𝐴) → (♯‘𝑥) ∈ (0[,]+∞)) |
52 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) → ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
53 | 46, 47, 51, 52 | esumpinfval 31941 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = +∞) |
54 | 43, 53 | sylan2 592 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ⊆ Fin) →
Σ*𝑥 ∈
𝐴(♯‘𝑥) = +∞) |
55 | 38, 54 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
56 | 55 | 3adant2 1129 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
57 | 56 | 3adant1r 1175 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
58 | 57 | 3expa 1116 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
59 | 25, 58 | pm2.61dan 809 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
60 | | pwfi 8923 |
. . . . . . 7
⊢ (∪ 𝐴
∈ Fin ↔ 𝒫 ∪ 𝐴 ∈ Fin) |
61 | | pwuni 4875 |
. . . . . . . 8
⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
62 | | ssfi 8918 |
. . . . . . . 8
⊢
((𝒫 ∪ 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)
→ 𝐴 ∈
Fin) |
63 | 61, 62 | mpan2 687 |
. . . . . . 7
⊢
(𝒫 ∪ 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
64 | 60, 63 | sylbi 216 |
. . . . . 6
⊢ (∪ 𝐴
∈ Fin → 𝐴 ∈
Fin) |
65 | 64 | con3i 154 |
. . . . 5
⊢ (¬
𝐴 ∈ Fin → ¬
∪ 𝐴 ∈ Fin) |
66 | 26, 65, 37 | syl2an 595 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
+∞) |
67 | | nftru 1808 |
. . . . . . . . 9
⊢
Ⅎ𝑥⊤ |
68 | | unrab 4236 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) = {𝑥 ∈ 𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} |
69 | | exmid 891 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑥) =
0 ∨ ¬ (♯‘𝑥) = 0) |
70 | 69 | rgenw 3075 |
. . . . . . . . . . . 12
⊢
∀𝑥 ∈
𝐴 ((♯‘𝑥) = 0 ∨ ¬
(♯‘𝑥) =
0) |
71 | | rabid2 3307 |
. . . . . . . . . . . 12
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} ↔ ∀𝑥 ∈ 𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)) |
72 | 70, 71 | mpbir 230 |
. . . . . . . . . . 11
⊢ 𝐴 = {𝑥 ∈ 𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} |
73 | 68, 72 | eqtr4i 2769 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴 |
74 | 73 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴) |
75 | 67, 74 | esumeq1d 31903 |
. . . . . . . 8
⊢ (⊤
→ Σ*𝑥
∈ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥 ∈ 𝐴(♯‘𝑥)) |
76 | 75 | mptru 1546 |
. . . . . . 7
⊢
Σ*𝑥
∈ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥 ∈ 𝐴(♯‘𝑥) |
77 | | nfrab1 3310 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} |
78 | | nfrab1 3310 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} |
79 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ V) |
80 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
V) |
81 | | rabnc 4318 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) =
∅ |
82 | 81 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) =
∅) |
83 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈
(0[,]+∞)) |
84 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) →
(♯‘𝑥) ∈
(0[,]+∞)) |
85 | 44, 77, 78, 79, 80, 82, 83, 84 | esumsplit 31921 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → Σ*𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥))) |
86 | 76, 85 | eqtr3id 2793 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥))) |
87 | 86 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥))) |
88 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) |
89 | 80 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
V) |
90 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) |
91 | | dfrab3 4240 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) |
92 | | hasheq0 14006 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ V →
((♯‘𝑥) = 0
↔ 𝑥 =
∅)) |
93 | 39, 92 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥) =
0 ↔ 𝑥 =
∅) |
94 | 93 | abbii 2809 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ 𝑥 = ∅} |
95 | | df-sn 4559 |
. . . . . . . . . . . . . 14
⊢ {∅}
= {𝑥 ∣ 𝑥 = ∅} |
96 | 94, 95 | eqtr4i 2769 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∣ (♯‘𝑥) = 0} =
{∅} |
97 | 96 | ineq2i 4140 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) = (𝐴 ∩ {∅}) |
98 | 91, 97 | eqtri 2766 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {∅}) |
99 | | snfi 8788 |
. . . . . . . . . . . 12
⊢ {∅}
∈ Fin |
100 | | inss2 4160 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ {∅}) ⊆
{∅} |
101 | | ssfi 8918 |
. . . . . . . . . . . 12
⊢
(({∅} ∈ Fin ∧ (𝐴 ∩ {∅}) ⊆ {∅}) →
(𝐴 ∩ {∅}) ∈
Fin) |
102 | 99, 100, 101 | mp2an 688 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ {∅}) ∈
Fin |
103 | 98, 102 | eqeltri 2835 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin |
104 | 103 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) |
105 | | difinf 9014 |
. . . . . . . . 9
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) → ¬ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin) |
106 | 90, 104, 105 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin) |
107 | | notrab 4242 |
. . . . . . . . 9
⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) = {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} |
108 | 107 | eleq1i 2829 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
Fin) |
109 | 106, 108 | sylnib 327 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
Fin) |
110 | 50 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) →
(♯‘𝑥) ∈
(0[,]+∞)) |
111 | 39 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ V) |
112 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) |
113 | | rabid 3304 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ↔ (𝑥 ∈ 𝐴 ∧ ¬ (♯‘𝑥) = 0)) |
114 | 112, 113 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (𝑥 ∈ 𝐴 ∧ ¬ (♯‘𝑥) = 0)) |
115 | 114 | simprd 495 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → ¬
(♯‘𝑥) =
0) |
116 | 93 | biimpri 227 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
0) |
117 | 116 | necon3bi 2969 |
. . . . . . . . 9
⊢ (¬
(♯‘𝑥) = 0
→ 𝑥 ≠
∅) |
118 | 115, 117 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ≠ ∅) |
119 | | hashge1 14032 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → 1 ≤
(♯‘𝑥)) |
120 | 111, 118,
119 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 1 ≤
(♯‘𝑥)) |
121 | | 1xr 10965 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
122 | 121 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 1 ∈
ℝ*) |
123 | | 0lt1 11427 |
. . . . . . . 8
⊢ 0 <
1 |
124 | 123 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 0 <
1) |
125 | 88, 78, 89, 109, 110, 120, 122, 124 | esumpinfsum 31945 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥) = +∞) |
126 | 125 | oveq2d 7271 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) →
(Σ*𝑥
∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
+∞)) |
127 | | iccssxr 13091 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
128 | 79 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ V) |
129 | 50 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈
(0[,]+∞)) |
130 | 129 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) |
131 | 77 | esumcl 31898 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ V ∧ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) →
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) |
132 | 128, 130,
131 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) |
133 | 127, 132 | sselid 3915 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈
ℝ*) |
134 | | xrge0neqmnf 13113 |
. . . . . . 7
⊢
(Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞) →
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) |
135 | 132, 134 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) |
136 | | xaddpnf1 12889 |
. . . . . 6
⊢
((Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ* ∧
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) →
(Σ*𝑥
∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
+∞) = +∞) |
137 | 133, 135,
136 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) →
(Σ*𝑥
∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
+∞) = +∞) |
138 | 87, 126, 137 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = +∞) |
139 | 66, 138 | eqtr4d 2781 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
140 | 139 | adantlr 711 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ ¬ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
141 | 59, 140 | pm2.61dan 809 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |