Proof of Theorem hasheuni
| Step | Hyp | Ref
| Expression |
| 1 | | nfdisj1 5100 |
. . . . . . . 8
⊢
Ⅎ𝑥Disj
𝑥 ∈ 𝐴 𝑥 |
| 2 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐴 ∈ Fin |
| 3 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐴 ⊆ Fin |
| 4 | 1, 2, 3 | nf3an 1901 |
. . . . . . 7
⊢
Ⅎ𝑥(Disj
𝑥 ∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) |
| 5 | | simp2 1137 |
. . . . . . 7
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
| 6 | | simp3 1138 |
. . . . . . 7
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ Fin) |
| 7 | | simp1 1136 |
. . . . . . 7
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑥 ∈ 𝐴 𝑥) |
| 8 | 4, 5, 6, 7 | hashunif 32785 |
. . . . . 6
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
| 9 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
| 10 | | dfss3 3947 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ Fin ↔
∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) |
| 11 | | hashcl 14374 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
ℕ0) |
| 12 | | nn0re 12510 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥)
∈ ℕ0 → (♯‘𝑥) ∈ ℝ) |
| 13 | | nn0ge0 12526 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥)
∈ ℕ0 → 0 ≤ (♯‘𝑥)) |
| 14 | | elrege0 13471 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑥)
∈ (0[,)+∞) ↔ ((♯‘𝑥) ∈ ℝ ∧ 0 ≤
(♯‘𝑥))) |
| 15 | 12, 13, 14 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑥)
∈ ℕ0 → (♯‘𝑥) ∈ (0[,)+∞)) |
| 16 | 11, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
(0[,)+∞)) |
| 17 | 16 | ralimi 3073 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝑥 ∈ Fin → ∀𝑥 ∈ 𝐴 (♯‘𝑥) ∈ (0[,)+∞)) |
| 18 | 10, 17 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ Fin →
∀𝑥 ∈ 𝐴 (♯‘𝑥) ∈
(0[,)+∞)) |
| 19 | 18 | r19.21bi 3234 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ Fin ∧ 𝑥 ∈ 𝐴) → (♯‘𝑥) ∈ (0[,)+∞)) |
| 20 | 19 | adantll 714 |
. . . . . . . 8
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑥 ∈ 𝐴) → (♯‘𝑥) ∈ (0[,)+∞)) |
| 21 | 9, 20 | esumpfinval 34106 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ*𝑥 ∈
𝐴(♯‘𝑥) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
| 22 | 21 | 3adant1 1130 |
. . . . . 6
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) →
Σ*𝑥 ∈
𝐴(♯‘𝑥) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
| 23 | 8, 22 | eqtr4d 2773 |
. . . . 5
⊢
((Disj 𝑥
∈ 𝐴 𝑥 ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 24 | 23 | 3adant1l 1177 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 25 | 24 | 3expa 1118 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 26 | | uniexg 7734 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) |
| 27 | 10 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
𝐴 ⊆ Fin ↔ ¬
∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) |
| 28 | | rexnal 3089 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ Fin ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ Fin) |
| 29 | 27, 28 | bitr4i 278 |
. . . . . . . . 9
⊢ (¬
𝐴 ⊆ Fin ↔
∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ Fin) |
| 30 | | elssuni 4913 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) |
| 31 | | ssfi 9187 |
. . . . . . . . . . . . 13
⊢ ((∪ 𝐴
∈ Fin ∧ 𝑥 ⊆
∪ 𝐴) → 𝑥 ∈ Fin) |
| 32 | 31 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ ∪ 𝐴
→ (∪ 𝐴 ∈ Fin → 𝑥 ∈ Fin)) |
| 33 | 32 | con3d 152 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ ∪ 𝐴
→ (¬ 𝑥 ∈ Fin
→ ¬ ∪ 𝐴 ∈ Fin)) |
| 34 | 30, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ Fin → ¬ ∪ 𝐴
∈ Fin)) |
| 35 | 34 | rexlimiv 3134 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ Fin → ¬ ∪ 𝐴
∈ Fin) |
| 36 | 29, 35 | sylbi 217 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ Fin → ¬
∪ 𝐴 ∈ Fin) |
| 37 | | hashinf 14353 |
. . . . . . . 8
⊢ ((∪ 𝐴
∈ V ∧ ¬ ∪ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
+∞) |
| 38 | 26, 36, 37 | syl2an 596 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
+∞) |
| 39 | | vex 3463 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 40 | | hashinf 14353 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ Fin) →
(♯‘𝑥) =
+∞) |
| 41 | 39, 40 | mpan 690 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ Fin →
(♯‘𝑥) =
+∞) |
| 42 | 41 | reximi 3074 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ Fin → ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
| 43 | 29, 42 | sylbi 217 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ Fin →
∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
| 44 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝐴 ∈ 𝑉 |
| 45 | | nfre1 3267 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞ |
| 46 | 44, 45 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
| 47 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) → 𝐴 ∈ 𝑉) |
| 48 | | hashf2 34115 |
. . . . . . . . . . 11
⊢
♯:V⟶(0[,]+∞) |
| 49 | | ffvelcdm 7071 |
. . . . . . . . . . 11
⊢
((♯:V⟶(0[,]+∞) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈
(0[,]+∞)) |
| 50 | 48, 39, 49 | mp2an 692 |
. . . . . . . . . 10
⊢
(♯‘𝑥)
∈ (0[,]+∞) |
| 51 | 50 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) ∧ 𝑥 ∈ 𝐴) → (♯‘𝑥) ∈ (0[,]+∞)) |
| 52 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) → ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) |
| 53 | 46, 47, 51, 52 | esumpinfval 34104 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 (♯‘𝑥) = +∞) → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = +∞) |
| 54 | 43, 53 | sylan2 593 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ⊆ Fin) →
Σ*𝑥 ∈
𝐴(♯‘𝑥) = +∞) |
| 55 | 38, 54 | eqtr4d 2773 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 56 | 55 | 3adant2 1131 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 57 | 56 | 3adant1r 1178 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 58 | 57 | 3expa 1118 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 ⊆ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 59 | 25, 58 | pm2.61dan 812 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 60 | | pwfi 9329 |
. . . . . . 7
⊢ (∪ 𝐴
∈ Fin ↔ 𝒫 ∪ 𝐴 ∈ Fin) |
| 61 | | pwuni 4921 |
. . . . . . . 8
⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| 62 | | ssfi 9187 |
. . . . . . . 8
⊢
((𝒫 ∪ 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)
→ 𝐴 ∈
Fin) |
| 63 | 61, 62 | mpan2 691 |
. . . . . . 7
⊢
(𝒫 ∪ 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
| 64 | 60, 63 | sylbi 217 |
. . . . . 6
⊢ (∪ 𝐴
∈ Fin → 𝐴 ∈
Fin) |
| 65 | 64 | con3i 154 |
. . . . 5
⊢ (¬
𝐴 ∈ Fin → ¬
∪ 𝐴 ∈ Fin) |
| 66 | 26, 65, 37 | syl2an 596 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
+∞) |
| 67 | | nftru 1804 |
. . . . . . . . 9
⊢
Ⅎ𝑥⊤ |
| 68 | | unrab 4290 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) = {𝑥 ∈ 𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} |
| 69 | | exmid 894 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑥) =
0 ∨ ¬ (♯‘𝑥) = 0) |
| 70 | 69 | rgenw 3055 |
. . . . . . . . . . . 12
⊢
∀𝑥 ∈
𝐴 ((♯‘𝑥) = 0 ∨ ¬
(♯‘𝑥) =
0) |
| 71 | | rabid2 3449 |
. . . . . . . . . . . 12
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} ↔ ∀𝑥 ∈ 𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)) |
| 72 | 70, 71 | mpbir 231 |
. . . . . . . . . . 11
⊢ 𝐴 = {𝑥 ∈ 𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} |
| 73 | 68, 72 | eqtr4i 2761 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴 |
| 74 | 73 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴) |
| 75 | 67, 74 | esumeq1d 34066 |
. . . . . . . 8
⊢ (⊤
→ Σ*𝑥
∈ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥 ∈ 𝐴(♯‘𝑥)) |
| 76 | 75 | mptru 1547 |
. . . . . . 7
⊢
Σ*𝑥
∈ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥 ∈ 𝐴(♯‘𝑥) |
| 77 | | nfrab1 3436 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} |
| 78 | | nfrab1 3436 |
. . . . . . . 8
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} |
| 79 | | rabexg 5307 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ V) |
| 80 | | rabexg 5307 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
V) |
| 81 | | rabnc 4366 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) =
∅ |
| 82 | 81 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) =
∅) |
| 83 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈
(0[,]+∞)) |
| 84 | 50 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) →
(♯‘𝑥) ∈
(0[,]+∞)) |
| 85 | 44, 77, 78, 79, 80, 82, 83, 84 | esumsplit 34084 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → Σ*𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥))) |
| 86 | 76, 85 | eqtr3id 2784 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥))) |
| 87 | 86 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥))) |
| 88 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑥(𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) |
| 89 | 80 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
V) |
| 90 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) |
| 91 | | dfrab3 4294 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) |
| 92 | | hasheq0 14381 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ V →
((♯‘𝑥) = 0
↔ 𝑥 =
∅)) |
| 93 | 39, 92 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥) =
0 ↔ 𝑥 =
∅) |
| 94 | 93 | abbii 2802 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ 𝑥 = ∅} |
| 95 | | df-sn 4602 |
. . . . . . . . . . . . . 14
⊢ {∅}
= {𝑥 ∣ 𝑥 = ∅} |
| 96 | 94, 95 | eqtr4i 2761 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∣ (♯‘𝑥) = 0} =
{∅} |
| 97 | 96 | ineq2i 4192 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) = (𝐴 ∩ {∅}) |
| 98 | 91, 97 | eqtri 2758 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {∅}) |
| 99 | | snfi 9057 |
. . . . . . . . . . . 12
⊢ {∅}
∈ Fin |
| 100 | | inss2 4213 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ {∅}) ⊆
{∅} |
| 101 | | ssfi 9187 |
. . . . . . . . . . . 12
⊢
(({∅} ∈ Fin ∧ (𝐴 ∩ {∅}) ⊆ {∅}) →
(𝐴 ∩ {∅}) ∈
Fin) |
| 102 | 99, 100, 101 | mp2an 692 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ {∅}) ∈
Fin |
| 103 | 98, 102 | eqeltri 2830 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin |
| 104 | 103 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) |
| 105 | | difinf 9321 |
. . . . . . . . 9
⊢ ((¬
𝐴 ∈ Fin ∧ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) → ¬ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin) |
| 106 | 90, 104, 105 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin) |
| 107 | | notrab 4297 |
. . . . . . . . 9
⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) = {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} |
| 108 | 107 | eleq1i 2825 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
Fin) |
| 109 | 106, 108 | sylnib 328 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈
Fin) |
| 110 | 50 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) →
(♯‘𝑥) ∈
(0[,]+∞)) |
| 111 | 39 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ V) |
| 112 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) |
| 113 | | rabid 3437 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} ↔ (𝑥 ∈ 𝐴 ∧ ¬ (♯‘𝑥) = 0)) |
| 114 | 112, 113 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (𝑥 ∈ 𝐴 ∧ ¬ (♯‘𝑥) = 0)) |
| 115 | 114 | simprd 495 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → ¬
(♯‘𝑥) =
0) |
| 116 | 93 | biimpri 228 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
0) |
| 117 | 116 | necon3bi 2958 |
. . . . . . . . 9
⊢ (¬
(♯‘𝑥) = 0
→ 𝑥 ≠
∅) |
| 118 | 115, 117 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ≠ ∅) |
| 119 | | hashge1 14407 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → 1 ≤
(♯‘𝑥)) |
| 120 | 111, 118,
119 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 1 ≤
(♯‘𝑥)) |
| 121 | | 1xr 11294 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
| 122 | 121 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 1 ∈
ℝ*) |
| 123 | | 0lt1 11759 |
. . . . . . . 8
⊢ 0 <
1 |
| 124 | 123 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 0 <
1) |
| 125 | 88, 78, 89, 109, 110, 120, 122, 124 | esumpinfsum 34108 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥) = +∞) |
| 126 | 125 | oveq2d 7421 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) →
(Σ*𝑥
∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)) = (Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
+∞)) |
| 127 | | iccssxr 13447 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
| 128 | 79 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ V) |
| 129 | 50 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈
(0[,]+∞)) |
| 130 | 129 | ralrimiva 3132 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) |
| 131 | 77 | esumcl 34061 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} ∈ V ∧ ∀𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) →
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) |
| 132 | 128, 130,
131 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) |
| 133 | 127, 132 | sselid 3956 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈
ℝ*) |
| 134 | | xrge0neqmnf 13469 |
. . . . . . 7
⊢
(Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞) →
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) |
| 135 | 132, 134 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) |
| 136 | | xaddpnf1 13242 |
. . . . . 6
⊢
((Σ*𝑥 ∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ* ∧
Σ*𝑥 ∈
{𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) →
(Σ*𝑥
∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
+∞) = +∞) |
| 137 | 133, 135,
136 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) →
(Σ*𝑥
∈ {𝑥 ∈ 𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒
+∞) = +∞) |
| 138 | 87, 126, 137 | 3eqtrd 2774 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ 𝐴(♯‘𝑥) = +∞) |
| 139 | 66, 138 | eqtr4d 2773 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 140 | 139 | adantlr 715 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) ∧ ¬ 𝐴 ∈ Fin) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |
| 141 | 59, 140 | pm2.61dan 812 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ Disj 𝑥 ∈ 𝐴 𝑥) → (♯‘∪ 𝐴) =
Σ*𝑥 ∈
𝐴(♯‘𝑥)) |