Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   GIF version

Theorem hasheuni 33152
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15774. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni ((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
Distinct variable groups:   š‘„,š“   š‘„,š‘‰

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 5127 . . . . . . . 8 ā„²š‘„Disj š‘„ āˆˆ š“ š‘„
2 nfv 1917 . . . . . . . 8 ā„²š‘„ š“ āˆˆ Fin
3 nfv 1917 . . . . . . . 8 ā„²š‘„ š“ āŠ† Fin
41, 2, 3nf3an 1904 . . . . . . 7 ā„²š‘„(Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin)
5 simp2 1137 . . . . . . 7 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ š“ āˆˆ Fin)
6 simp3 1138 . . . . . . 7 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ š“ āŠ† Fin)
7 simp1 1136 . . . . . . 7 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ Disj š‘„ āˆˆ š“ š‘„)
84, 5, 6, 7hashunif 32056 . . . . . 6 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£š‘„ āˆˆ š“ (ā™Æā€˜š‘„))
9 simpl 483 . . . . . . . 8 ((š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ š“ āˆˆ Fin)
10 dfss3 3970 . . . . . . . . . . 11 (š“ āŠ† Fin ā†” āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin)
11 hashcl 14318 . . . . . . . . . . . . 13 (š‘„ āˆˆ Fin ā†’ (ā™Æā€˜š‘„) āˆˆ ā„•0)
12 nn0re 12483 . . . . . . . . . . . . . 14 ((ā™Æā€˜š‘„) āˆˆ ā„•0 ā†’ (ā™Æā€˜š‘„) āˆˆ ā„)
13 nn0ge0 12499 . . . . . . . . . . . . . 14 ((ā™Æā€˜š‘„) āˆˆ ā„•0 ā†’ 0 ā‰¤ (ā™Æā€˜š‘„))
14 elrege0 13433 . . . . . . . . . . . . . 14 ((ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž) ā†” ((ā™Æā€˜š‘„) āˆˆ ā„ āˆ§ 0 ā‰¤ (ā™Æā€˜š‘„)))
1512, 13, 14sylanbrc 583 . . . . . . . . . . . . 13 ((ā™Æā€˜š‘„) āˆˆ ā„•0 ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1611, 15syl 17 . . . . . . . . . . . 12 (š‘„ āˆˆ Fin ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1716ralimi 3083 . . . . . . . . . . 11 (āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin ā†’ āˆ€š‘„ āˆˆ š“ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1810, 17sylbi 216 . . . . . . . . . 10 (š“ āŠ† Fin ā†’ āˆ€š‘„ āˆˆ š“ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1918r19.21bi 3248 . . . . . . . . 9 ((š“ āŠ† Fin āˆ§ š‘„ āˆˆ š“) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
2019adantll 712 . . . . . . . 8 (((š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) āˆ§ š‘„ āˆˆ š“) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
219, 20esumpfinval 33142 . . . . . . 7 ((š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = Ī£š‘„ āˆˆ š“ (ā™Æā€˜š‘„))
22213adant1 1130 . . . . . 6 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = Ī£š‘„ āˆˆ š“ (ā™Æā€˜š‘„))
238, 22eqtr4d 2775 . . . . 5 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
24233adant1l 1176 . . . 4 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
25243expa 1118 . . 3 ((((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin) āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
26 uniexg 7732 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ āˆŖ š“ āˆˆ V)
2710notbii 319 . . . . . . . . . 10 (Ā¬ š“ āŠ† Fin ā†” Ā¬ āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin)
28 rexnal 3100 . . . . . . . . . 10 (āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin ā†” Ā¬ āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin)
2927, 28bitr4i 277 . . . . . . . . 9 (Ā¬ š“ āŠ† Fin ā†” āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin)
30 elssuni 4941 . . . . . . . . . . 11 (š‘„ āˆˆ š“ ā†’ š‘„ āŠ† āˆŖ š“)
31 ssfi 9175 . . . . . . . . . . . . 13 ((āˆŖ š“ āˆˆ Fin āˆ§ š‘„ āŠ† āˆŖ š“) ā†’ š‘„ āˆˆ Fin)
3231expcom 414 . . . . . . . . . . . 12 (š‘„ āŠ† āˆŖ š“ ā†’ (āˆŖ š“ āˆˆ Fin ā†’ š‘„ āˆˆ Fin))
3332con3d 152 . . . . . . . . . . 11 (š‘„ āŠ† āˆŖ š“ ā†’ (Ā¬ š‘„ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin))
3430, 33syl 17 . . . . . . . . . 10 (š‘„ āˆˆ š“ ā†’ (Ā¬ š‘„ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin))
3534rexlimiv 3148 . . . . . . . . 9 (āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin)
3629, 35sylbi 216 . . . . . . . 8 (Ā¬ š“ āŠ† Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin)
37 hashinf 14297 . . . . . . . 8 ((āˆŖ š“ āˆˆ V āˆ§ Ā¬ āˆŖ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = +āˆž)
3826, 36, 37syl2an 596 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = +āˆž)
39 vex 3478 . . . . . . . . . . 11 š‘„ āˆˆ V
40 hashinf 14297 . . . . . . . . . . 11 ((š‘„ āˆˆ V āˆ§ Ā¬ š‘„ āˆˆ Fin) ā†’ (ā™Æā€˜š‘„) = +āˆž)
4139, 40mpan 688 . . . . . . . . . 10 (Ā¬ š‘„ āˆˆ Fin ā†’ (ā™Æā€˜š‘„) = +āˆž)
4241reximi 3084 . . . . . . . . 9 (āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin ā†’ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
4329, 42sylbi 216 . . . . . . . 8 (Ā¬ š“ āŠ† Fin ā†’ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
44 nfv 1917 . . . . . . . . . 10 ā„²š‘„ š“ āˆˆ š‘‰
45 nfre1 3282 . . . . . . . . . 10 ā„²š‘„āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž
4644, 45nfan 1902 . . . . . . . . 9 ā„²š‘„(š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
47 simpl 483 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) ā†’ š“ āˆˆ š‘‰)
48 hashf2 33151 . . . . . . . . . . 11 ā™Æ:VāŸ¶(0[,]+āˆž)
49 ffvelcdm 7083 . . . . . . . . . . 11 ((ā™Æ:VāŸ¶(0[,]+āˆž) āˆ§ š‘„ āˆˆ V) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
5048, 39, 49mp2an 690 . . . . . . . . . 10 (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž)
5150a1i 11 . . . . . . . . 9 (((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) āˆ§ š‘„ āˆˆ š“) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
52 simpr 485 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) ā†’ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
5346, 47, 51, 52esumpinfval 33140 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = +āˆž)
5443, 53sylan2 593 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āŠ† Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = +āˆž)
5538, 54eqtr4d 2775 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
56553adant2 1131 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ š“ āˆˆ Fin āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
57563adant1r 1177 . . . 4 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
58573expa 1118 . . 3 ((((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin) āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
5925, 58pm2.61dan 811 . 2 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
60 pwfi 9180 . . . . . . 7 (āˆŖ š“ āˆˆ Fin ā†” š’« āˆŖ š“ āˆˆ Fin)
61 pwuni 4949 . . . . . . . 8 š“ āŠ† š’« āˆŖ š“
62 ssfi 9175 . . . . . . . 8 ((š’« āˆŖ š“ āˆˆ Fin āˆ§ š“ āŠ† š’« āˆŖ š“) ā†’ š“ āˆˆ Fin)
6361, 62mpan2 689 . . . . . . 7 (š’« āˆŖ š“ āˆˆ Fin ā†’ š“ āˆˆ Fin)
6460, 63sylbi 216 . . . . . 6 (āˆŖ š“ āˆˆ Fin ā†’ š“ āˆˆ Fin)
6564con3i 154 . . . . 5 (Ā¬ š“ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin)
6626, 65, 37syl2an 596 . . . 4 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = +āˆž)
67 nftru 1806 . . . . . . . . 9 ā„²š‘„āŠ¤
68 unrab 4305 . . . . . . . . . . 11 ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = {š‘„ āˆˆ š“ āˆ£ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)}
69 exmid 893 . . . . . . . . . . . . 13 ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)
7069rgenw 3065 . . . . . . . . . . . 12 āˆ€š‘„ āˆˆ š“ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)
71 rabid2 3464 . . . . . . . . . . . 12 (š“ = {š‘„ āˆˆ š“ āˆ£ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)} ā†” āˆ€š‘„ āˆˆ š“ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0))
7270, 71mpbir 230 . . . . . . . . . . 11 š“ = {š‘„ āˆˆ š“ āˆ£ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)}
7368, 72eqtr4i 2763 . . . . . . . . . 10 ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = š“
7473a1i 11 . . . . . . . . 9 (āŠ¤ ā†’ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = š“)
7567, 74esumeq1d 33102 . . . . . . . 8 (āŠ¤ ā†’ Ī£*š‘„ āˆˆ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})(ā™Æā€˜š‘„) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
7675mptru 1548 . . . . . . 7 Ī£*š‘„ āˆˆ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})(ā™Æā€˜š‘„) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„)
77 nfrab1 3451 . . . . . . . 8 ā„²š‘„{š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}
78 nfrab1 3451 . . . . . . . 8 ā„²š‘„{š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}
79 rabexg 5331 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ V)
80 rabexg 5331 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ V)
81 rabnc 4387 . . . . . . . . 9 ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆ© {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = āˆ…
8281a1i 11 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆ© {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = āˆ…)
8350a1i 11 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
8450a1i 11 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 33120 . . . . . . 7 (š“ āˆˆ š‘‰ ā†’ Ī£*š‘„ āˆˆ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})(ā™Æā€˜š‘„) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)))
8676, 85eqtr3id 2786 . . . . . 6 (š“ āˆˆ š‘‰ ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)))
8786adantr 481 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)))
88 nfv 1917 . . . . . . 7 ā„²š‘„(š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin)
8980adantr 481 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ V)
90 simpr 485 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ā¬ š“ āˆˆ Fin)
91 dfrab3 4309 . . . . . . . . . . . 12 {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} = (š“ āˆ© {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0})
92 hasheq0 14325 . . . . . . . . . . . . . . . 16 (š‘„ āˆˆ V ā†’ ((ā™Æā€˜š‘„) = 0 ā†” š‘„ = āˆ…))
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15 ((ā™Æā€˜š‘„) = 0 ā†” š‘„ = āˆ…)
9493abbii 2802 . . . . . . . . . . . . . 14 {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0} = {š‘„ āˆ£ š‘„ = āˆ…}
95 df-sn 4629 . . . . . . . . . . . . . 14 {āˆ…} = {š‘„ āˆ£ š‘„ = āˆ…}
9694, 95eqtr4i 2763 . . . . . . . . . . . . 13 {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0} = {āˆ…}
9796ineq2i 4209 . . . . . . . . . . . 12 (š“ āˆ© {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0}) = (š“ āˆ© {āˆ…})
9891, 97eqtri 2760 . . . . . . . . . . 11 {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} = (š“ āˆ© {āˆ…})
99 snfi 9046 . . . . . . . . . . . 12 {āˆ…} āˆˆ Fin
100 inss2 4229 . . . . . . . . . . . 12 (š“ āˆ© {āˆ…}) āŠ† {āˆ…}
101 ssfi 9175 . . . . . . . . . . . 12 (({āˆ…} āˆˆ Fin āˆ§ (š“ āˆ© {āˆ…}) āŠ† {āˆ…}) ā†’ (š“ āˆ© {āˆ…}) āˆˆ Fin)
10299, 100, 101mp2an 690 . . . . . . . . . . 11 (š“ āˆ© {āˆ…}) āˆˆ Fin
10398, 102eqeltri 2829 . . . . . . . . . 10 {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ Fin
104103a1i 11 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ Fin)
105 difinf 9318 . . . . . . . . 9 ((Ā¬ š“ āˆˆ Fin āˆ§ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ Fin) ā†’ Ā¬ (š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) āˆˆ Fin)
10690, 104, 105syl2anc 584 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ā¬ (š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) āˆˆ Fin)
107 notrab 4311 . . . . . . . . 9 (š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) = {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}
108107eleq1i 2824 . . . . . . . 8 ((š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) āˆˆ Fin ā†” {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ Fin)
109106, 108sylnib 327 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ā¬ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ Fin)
11050a1i 11 . . . . . . 7 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
11139a1i 11 . . . . . . . 8 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ š‘„ āˆˆ V)
112 simpr 485 . . . . . . . . . . 11 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})
113 rabid 3452 . . . . . . . . . . 11 (š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} ā†” (š‘„ āˆˆ š“ āˆ§ Ā¬ (ā™Æā€˜š‘„) = 0))
114112, 113sylib 217 . . . . . . . . . 10 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ (š‘„ āˆˆ š“ āˆ§ Ā¬ (ā™Æā€˜š‘„) = 0))
115114simprd 496 . . . . . . . . 9 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ Ā¬ (ā™Æā€˜š‘„) = 0)
11693biimpri 227 . . . . . . . . . 10 (š‘„ = āˆ… ā†’ (ā™Æā€˜š‘„) = 0)
117116necon3bi 2967 . . . . . . . . 9 (Ā¬ (ā™Æā€˜š‘„) = 0 ā†’ š‘„ ā‰  āˆ…)
118115, 117syl 17 . . . . . . . 8 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ š‘„ ā‰  āˆ…)
119 hashge1 14351 . . . . . . . 8 ((š‘„ āˆˆ V āˆ§ š‘„ ā‰  āˆ…) ā†’ 1 ā‰¤ (ā™Æā€˜š‘„))
120111, 118, 119syl2anc 584 . . . . . . 7 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ 1 ā‰¤ (ā™Æā€˜š‘„))
121 1xr 11275 . . . . . . . 8 1 āˆˆ ā„*
122121a1i 11 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ 1 āˆˆ ā„*)
123 0lt1 11738 . . . . . . . 8 0 < 1
124123a1i 11 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ 0 < 1)
12588, 78, 89, 109, 110, 120, 122, 124esumpinfsum 33144 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) = +āˆž)
126125oveq2d 7427 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ +āˆž))
127 iccssxr 13409 . . . . . . 7 (0[,]+āˆž) āŠ† ā„*
12879adantr 481 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ V)
12950a1i 11 . . . . . . . . 9 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
130129ralrimiva 3146 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ āˆ€š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
13177esumcl 33097 . . . . . . . 8 (({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ V āˆ§ āˆ€š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž)) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
132128, 130, 131syl2anc 584 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
133127, 132sselid 3980 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ ā„*)
134 xrge0neqmnf 13431 . . . . . . 7 (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) ā‰  -āˆž)
135132, 134syl 17 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) ā‰  -āˆž)
136 xaddpnf1 13207 . . . . . 6 ((Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ ā„* āˆ§ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) ā‰  -āˆž) ā†’ (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ +āˆž) = +āˆž)
137133, 135, 136syl2anc 584 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ +āˆž) = +āˆž)
13887, 126, 1373eqtrd 2776 . . . 4 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = +āˆž)
13966, 138eqtr4d 2775 . . 3 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
140139adantlr 713 . 2 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
14159, 140pm2.61dan 811 1 ((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
Colors of variables: wff setvar class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   āˆØ wo 845   āˆ§ w3a 1087   = wceq 1541  āŠ¤wtru 1542   āˆˆ wcel 2106  {cab 2709   ā‰  wne 2940  āˆ€wral 3061  āˆƒwrex 3070  {crab 3432  Vcvv 3474   āˆ– cdif 3945   āˆŖ cun 3946   āˆ© cin 3947   āŠ† wss 3948  āˆ…c0 4322  š’« cpw 4602  {csn 4628  āˆŖ cuni 4908  Disj wdisj 5113   class class class wbr 5148  āŸ¶wf 6539  ā€˜cfv 6543  (class class class)co 7411  Fincfn 8941  ā„cr 11111  0cc0 11112  1c1 11113  +āˆžcpnf 11247  -āˆžcmnf 11248  ā„*cxr 11249   < clt 11250   ā‰¤ cle 11251  ā„•0cn0 12474   +š‘’ cxad 13092  [,)cico 13328  [,]cicc 13329  ā™Æchash 14292  Ī£csu 15634  Ī£*cesum 33094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-xnn0 12547  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ioc 13331  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-fac 14236  df-bc 14265  df-hash 14293  df-shft 15016  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-limsup 15417  df-clim 15434  df-rlim 15435  df-sum 15635  df-ef 16013  df-sin 16015  df-cos 16016  df-pi 16018  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-hom 17223  df-cco 17224  df-rest 17370  df-topn 17371  df-0g 17389  df-gsum 17390  df-topgen 17391  df-pt 17392  df-prds 17395  df-ordt 17449  df-xrs 17450  df-qtop 17455  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-ps 18521  df-tsr 18522  df-plusf 18562  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673  df-submnd 18674  df-grp 18824  df-minusg 18825  df-sbg 18826  df-mulg 18953  df-subg 19005  df-cntz 19183  df-cmn 19652  df-abl 19653  df-mgp 19990  df-ur 20007  df-ring 20060  df-cring 20061  df-subrg 20321  df-abv 20429  df-lmod 20477  df-scaf 20478  df-sra 20791  df-rgmod 20792  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-fbas 20947  df-fg 20948  df-cnfld 20951  df-top 22403  df-topon 22420  df-topsp 22442  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-nei 22609  df-lp 22647  df-perf 22648  df-cn 22738  df-cnp 22739  df-haus 22826  df-tx 23073  df-hmeo 23266  df-fil 23357  df-fm 23449  df-flim 23450  df-flf 23451  df-tmd 23583  df-tgp 23584  df-tsms 23638  df-trg 23671  df-xms 23833  df-ms 23834  df-tms 23835  df-nm 24098  df-ngp 24099  df-nrg 24101  df-nlm 24102  df-ii 24400  df-cncf 24401  df-limc 25390  df-dv 25391  df-log 26072  df-esum 33095
This theorem is referenced by:  cntmeas  33293
  Copyright terms: Public domain W3C validator