Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   GIF version

Theorem hasheuni 33083
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15772. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni ((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
Distinct variable groups:   š‘„,š“   š‘„,š‘‰

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 5128 . . . . . . . 8 ā„²š‘„Disj š‘„ āˆˆ š“ š‘„
2 nfv 1918 . . . . . . . 8 ā„²š‘„ š“ āˆˆ Fin
3 nfv 1918 . . . . . . . 8 ā„²š‘„ š“ āŠ† Fin
41, 2, 3nf3an 1905 . . . . . . 7 ā„²š‘„(Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin)
5 simp2 1138 . . . . . . 7 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ š“ āˆˆ Fin)
6 simp3 1139 . . . . . . 7 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ š“ āŠ† Fin)
7 simp1 1137 . . . . . . 7 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ Disj š‘„ āˆˆ š“ š‘„)
84, 5, 6, 7hashunif 32018 . . . . . 6 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£š‘„ āˆˆ š“ (ā™Æā€˜š‘„))
9 simpl 484 . . . . . . . 8 ((š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ š“ āˆˆ Fin)
10 dfss3 3971 . . . . . . . . . . 11 (š“ āŠ† Fin ā†” āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin)
11 hashcl 14316 . . . . . . . . . . . . 13 (š‘„ āˆˆ Fin ā†’ (ā™Æā€˜š‘„) āˆˆ ā„•0)
12 nn0re 12481 . . . . . . . . . . . . . 14 ((ā™Æā€˜š‘„) āˆˆ ā„•0 ā†’ (ā™Æā€˜š‘„) āˆˆ ā„)
13 nn0ge0 12497 . . . . . . . . . . . . . 14 ((ā™Æā€˜š‘„) āˆˆ ā„•0 ā†’ 0 ā‰¤ (ā™Æā€˜š‘„))
14 elrege0 13431 . . . . . . . . . . . . . 14 ((ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž) ā†” ((ā™Æā€˜š‘„) āˆˆ ā„ āˆ§ 0 ā‰¤ (ā™Æā€˜š‘„)))
1512, 13, 14sylanbrc 584 . . . . . . . . . . . . 13 ((ā™Æā€˜š‘„) āˆˆ ā„•0 ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1611, 15syl 17 . . . . . . . . . . . 12 (š‘„ āˆˆ Fin ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1716ralimi 3084 . . . . . . . . . . 11 (āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin ā†’ āˆ€š‘„ āˆˆ š“ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1810, 17sylbi 216 . . . . . . . . . 10 (š“ āŠ† Fin ā†’ āˆ€š‘„ āˆˆ š“ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
1918r19.21bi 3249 . . . . . . . . 9 ((š“ āŠ† Fin āˆ§ š‘„ āˆˆ š“) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
2019adantll 713 . . . . . . . 8 (((š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) āˆ§ š‘„ āˆˆ š“) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,)+āˆž))
219, 20esumpfinval 33073 . . . . . . 7 ((š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = Ī£š‘„ āˆˆ š“ (ā™Æā€˜š‘„))
22213adant1 1131 . . . . . 6 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = Ī£š‘„ āˆˆ š“ (ā™Æā€˜š‘„))
238, 22eqtr4d 2776 . . . . 5 ((Disj š‘„ āˆˆ š“ š‘„ āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
24233adant1l 1177 . . . 4 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
25243expa 1119 . . 3 ((((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin) āˆ§ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
26 uniexg 7730 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ āˆŖ š“ āˆˆ V)
2710notbii 320 . . . . . . . . . 10 (Ā¬ š“ āŠ† Fin ā†” Ā¬ āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin)
28 rexnal 3101 . . . . . . . . . 10 (āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin ā†” Ā¬ āˆ€š‘„ āˆˆ š“ š‘„ āˆˆ Fin)
2927, 28bitr4i 278 . . . . . . . . 9 (Ā¬ š“ āŠ† Fin ā†” āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin)
30 elssuni 4942 . . . . . . . . . . 11 (š‘„ āˆˆ š“ ā†’ š‘„ āŠ† āˆŖ š“)
31 ssfi 9173 . . . . . . . . . . . . 13 ((āˆŖ š“ āˆˆ Fin āˆ§ š‘„ āŠ† āˆŖ š“) ā†’ š‘„ āˆˆ Fin)
3231expcom 415 . . . . . . . . . . . 12 (š‘„ āŠ† āˆŖ š“ ā†’ (āˆŖ š“ āˆˆ Fin ā†’ š‘„ āˆˆ Fin))
3332con3d 152 . . . . . . . . . . 11 (š‘„ āŠ† āˆŖ š“ ā†’ (Ā¬ š‘„ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin))
3430, 33syl 17 . . . . . . . . . 10 (š‘„ āˆˆ š“ ā†’ (Ā¬ š‘„ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin))
3534rexlimiv 3149 . . . . . . . . 9 (āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin)
3629, 35sylbi 216 . . . . . . . 8 (Ā¬ š“ āŠ† Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin)
37 hashinf 14295 . . . . . . . 8 ((āˆŖ š“ āˆˆ V āˆ§ Ā¬ āˆŖ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = +āˆž)
3826, 36, 37syl2an 597 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = +āˆž)
39 vex 3479 . . . . . . . . . . 11 š‘„ āˆˆ V
40 hashinf 14295 . . . . . . . . . . 11 ((š‘„ āˆˆ V āˆ§ Ā¬ š‘„ āˆˆ Fin) ā†’ (ā™Æā€˜š‘„) = +āˆž)
4139, 40mpan 689 . . . . . . . . . 10 (Ā¬ š‘„ āˆˆ Fin ā†’ (ā™Æā€˜š‘„) = +āˆž)
4241reximi 3085 . . . . . . . . 9 (āˆƒš‘„ āˆˆ š“ Ā¬ š‘„ āˆˆ Fin ā†’ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
4329, 42sylbi 216 . . . . . . . 8 (Ā¬ š“ āŠ† Fin ā†’ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
44 nfv 1918 . . . . . . . . . 10 ā„²š‘„ š“ āˆˆ š‘‰
45 nfre1 3283 . . . . . . . . . 10 ā„²š‘„āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž
4644, 45nfan 1903 . . . . . . . . 9 ā„²š‘„(š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
47 simpl 484 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) ā†’ š“ āˆˆ š‘‰)
48 hashf2 33082 . . . . . . . . . . 11 ā™Æ:VāŸ¶(0[,]+āˆž)
49 ffvelcdm 7084 . . . . . . . . . . 11 ((ā™Æ:VāŸ¶(0[,]+āˆž) āˆ§ š‘„ āˆˆ V) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
5048, 39, 49mp2an 691 . . . . . . . . . 10 (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž)
5150a1i 11 . . . . . . . . 9 (((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) āˆ§ š‘„ āˆˆ š“) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
52 simpr 486 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) ā†’ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž)
5346, 47, 51, 52esumpinfval 33071 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ āˆƒš‘„ āˆˆ š“ (ā™Æā€˜š‘„) = +āˆž) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = +āˆž)
5443, 53sylan2 594 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āŠ† Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = +āˆž)
5538, 54eqtr4d 2776 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
56553adant2 1132 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ š“ āˆˆ Fin āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
57563adant1r 1178 . . . 4 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
58573expa 1119 . . 3 ((((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin) āˆ§ Ā¬ š“ āŠ† Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
5925, 58pm2.61dan 812 . 2 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
60 pwfi 9178 . . . . . . 7 (āˆŖ š“ āˆˆ Fin ā†” š’« āˆŖ š“ āˆˆ Fin)
61 pwuni 4950 . . . . . . . 8 š“ āŠ† š’« āˆŖ š“
62 ssfi 9173 . . . . . . . 8 ((š’« āˆŖ š“ āˆˆ Fin āˆ§ š“ āŠ† š’« āˆŖ š“) ā†’ š“ āˆˆ Fin)
6361, 62mpan2 690 . . . . . . 7 (š’« āˆŖ š“ āˆˆ Fin ā†’ š“ āˆˆ Fin)
6460, 63sylbi 216 . . . . . 6 (āˆŖ š“ āˆˆ Fin ā†’ š“ āˆˆ Fin)
6564con3i 154 . . . . 5 (Ā¬ š“ āˆˆ Fin ā†’ Ā¬ āˆŖ š“ āˆˆ Fin)
6626, 65, 37syl2an 597 . . . 4 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = +āˆž)
67 nftru 1807 . . . . . . . . 9 ā„²š‘„āŠ¤
68 unrab 4306 . . . . . . . . . . 11 ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = {š‘„ āˆˆ š“ āˆ£ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)}
69 exmid 894 . . . . . . . . . . . . 13 ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)
7069rgenw 3066 . . . . . . . . . . . 12 āˆ€š‘„ āˆˆ š“ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)
71 rabid2 3465 . . . . . . . . . . . 12 (š“ = {š‘„ āˆˆ š“ āˆ£ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)} ā†” āˆ€š‘„ āˆˆ š“ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0))
7270, 71mpbir 230 . . . . . . . . . . 11 š“ = {š‘„ āˆˆ š“ āˆ£ ((ā™Æā€˜š‘„) = 0 āˆØ Ā¬ (ā™Æā€˜š‘„) = 0)}
7368, 72eqtr4i 2764 . . . . . . . . . 10 ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = š“
7473a1i 11 . . . . . . . . 9 (āŠ¤ ā†’ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = š“)
7567, 74esumeq1d 33033 . . . . . . . 8 (āŠ¤ ā†’ Ī£*š‘„ āˆˆ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})(ā™Æā€˜š‘„) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
7675mptru 1549 . . . . . . 7 Ī£*š‘„ āˆˆ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})(ā™Æā€˜š‘„) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„)
77 nfrab1 3452 . . . . . . . 8 ā„²š‘„{š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}
78 nfrab1 3452 . . . . . . . 8 ā„²š‘„{š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}
79 rabexg 5332 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ V)
80 rabexg 5332 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ V)
81 rabnc 4388 . . . . . . . . 9 ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆ© {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = āˆ…
8281a1i 11 . . . . . . . 8 (š“ āˆˆ š‘‰ ā†’ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆ© {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) = āˆ…)
8350a1i 11 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
8450a1i 11 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 33051 . . . . . . 7 (š“ āˆˆ š‘‰ ā†’ Ī£*š‘„ āˆˆ ({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆŖ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})(ā™Æā€˜š‘„) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)))
8676, 85eqtr3id 2787 . . . . . 6 (š“ āˆˆ š‘‰ ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)))
8786adantr 482 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)))
88 nfv 1918 . . . . . . 7 ā„²š‘„(š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin)
8980adantr 482 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ V)
90 simpr 486 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ā¬ š“ āˆˆ Fin)
91 dfrab3 4310 . . . . . . . . . . . 12 {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} = (š“ āˆ© {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0})
92 hasheq0 14323 . . . . . . . . . . . . . . . 16 (š‘„ āˆˆ V ā†’ ((ā™Æā€˜š‘„) = 0 ā†” š‘„ = āˆ…))
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15 ((ā™Æā€˜š‘„) = 0 ā†” š‘„ = āˆ…)
9493abbii 2803 . . . . . . . . . . . . . 14 {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0} = {š‘„ āˆ£ š‘„ = āˆ…}
95 df-sn 4630 . . . . . . . . . . . . . 14 {āˆ…} = {š‘„ āˆ£ š‘„ = āˆ…}
9694, 95eqtr4i 2764 . . . . . . . . . . . . 13 {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0} = {āˆ…}
9796ineq2i 4210 . . . . . . . . . . . 12 (š“ āˆ© {š‘„ āˆ£ (ā™Æā€˜š‘„) = 0}) = (š“ āˆ© {āˆ…})
9891, 97eqtri 2761 . . . . . . . . . . 11 {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} = (š“ āˆ© {āˆ…})
99 snfi 9044 . . . . . . . . . . . 12 {āˆ…} āˆˆ Fin
100 inss2 4230 . . . . . . . . . . . 12 (š“ āˆ© {āˆ…}) āŠ† {āˆ…}
101 ssfi 9173 . . . . . . . . . . . 12 (({āˆ…} āˆˆ Fin āˆ§ (š“ āˆ© {āˆ…}) āŠ† {āˆ…}) ā†’ (š“ āˆ© {āˆ…}) āˆˆ Fin)
10299, 100, 101mp2an 691 . . . . . . . . . . 11 (š“ āˆ© {āˆ…}) āˆˆ Fin
10398, 102eqeltri 2830 . . . . . . . . . 10 {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ Fin
104103a1i 11 . . . . . . . . 9 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ Fin)
105 difinf 9316 . . . . . . . . 9 ((Ā¬ š“ āˆˆ Fin āˆ§ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ Fin) ā†’ Ā¬ (š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) āˆˆ Fin)
10690, 104, 105syl2anc 585 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ā¬ (š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) āˆˆ Fin)
107 notrab 4312 . . . . . . . . 9 (š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) = {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}
108107eleq1i 2825 . . . . . . . 8 ((š“ āˆ– {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) āˆˆ Fin ā†” {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ Fin)
109106, 108sylnib 328 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ā¬ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} āˆˆ Fin)
11050a1i 11 . . . . . . 7 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
11139a1i 11 . . . . . . . 8 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ š‘„ āˆˆ V)
112 simpr 486 . . . . . . . . . . 11 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0})
113 rabid 3453 . . . . . . . . . . 11 (š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} ā†” (š‘„ āˆˆ š“ āˆ§ Ā¬ (ā™Æā€˜š‘„) = 0))
114112, 113sylib 217 . . . . . . . . . 10 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ (š‘„ āˆˆ š“ āˆ§ Ā¬ (ā™Æā€˜š‘„) = 0))
115114simprd 497 . . . . . . . . 9 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ Ā¬ (ā™Æā€˜š‘„) = 0)
11693biimpri 227 . . . . . . . . . 10 (š‘„ = āˆ… ā†’ (ā™Æā€˜š‘„) = 0)
117116necon3bi 2968 . . . . . . . . 9 (Ā¬ (ā™Æā€˜š‘„) = 0 ā†’ š‘„ ā‰  āˆ…)
118115, 117syl 17 . . . . . . . 8 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ š‘„ ā‰  āˆ…)
119 hashge1 14349 . . . . . . . 8 ((š‘„ āˆˆ V āˆ§ š‘„ ā‰  āˆ…) ā†’ 1 ā‰¤ (ā™Æā€˜š‘„))
120111, 118, 119syl2anc 585 . . . . . . 7 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0}) ā†’ 1 ā‰¤ (ā™Æā€˜š‘„))
121 1xr 11273 . . . . . . . 8 1 āˆˆ ā„*
122121a1i 11 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ 1 āˆˆ ā„*)
123 0lt1 11736 . . . . . . . 8 0 < 1
124123a1i 11 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ 0 < 1)
12588, 78, 89, 109, 110, 120, 122, 124esumpinfsum 33075 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) = +āˆž)
126125oveq2d 7425 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ Ā¬ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„)) = (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ +āˆž))
127 iccssxr 13407 . . . . . . 7 (0[,]+āˆž) āŠ† ā„*
12879adantr 482 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ V)
12950a1i 11 . . . . . . . . 9 (((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) āˆ§ š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0}) ā†’ (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
130129ralrimiva 3147 . . . . . . . 8 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ āˆ€š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
13177esumcl 33028 . . . . . . . 8 (({š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} āˆˆ V āˆ§ āˆ€š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž)) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
132128, 130, 131syl2anc 585 . . . . . . 7 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž))
133127, 132sselid 3981 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ ā„*)
134 xrge0neqmnf 13429 . . . . . . 7 (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ (0[,]+āˆž) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) ā‰  -āˆž)
135132, 134syl 17 . . . . . 6 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) ā‰  -āˆž)
136 xaddpnf1 13205 . . . . . 6 ((Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) āˆˆ ā„* āˆ§ Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) ā‰  -āˆž) ā†’ (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ +āˆž) = +āˆž)
137133, 135, 136syl2anc 585 . . . . 5 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (Ī£*š‘„ āˆˆ {š‘„ āˆˆ š“ āˆ£ (ā™Æā€˜š‘„) = 0} (ā™Æā€˜š‘„) +š‘’ +āˆž) = +āˆž)
13887, 126, 1373eqtrd 2777 . . . 4 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„) = +āˆž)
13966, 138eqtr4d 2776 . . 3 ((š“ āˆˆ š‘‰ āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
140139adantlr 714 . 2 (((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) āˆ§ Ā¬ š“ āˆˆ Fin) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
14159, 140pm2.61dan 812 1 ((š“ āˆˆ š‘‰ āˆ§ Disj š‘„ āˆˆ š“ š‘„) ā†’ (ā™Æā€˜āˆŖ š“) = Ī£*š‘„ āˆˆ š“(ā™Æā€˜š‘„))
Colors of variables: wff setvar class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   ā†” wb 205   āˆ§ wa 397   āˆØ wo 846   āˆ§ w3a 1088   = wceq 1542  āŠ¤wtru 1543   āˆˆ wcel 2107  {cab 2710   ā‰  wne 2941  āˆ€wral 3062  āˆƒwrex 3071  {crab 3433  Vcvv 3475   āˆ– cdif 3946   āˆŖ cun 3947   āˆ© cin 3948   āŠ† wss 3949  āˆ…c0 4323  š’« cpw 4603  {csn 4629  āˆŖ cuni 4909  Disj wdisj 5114   class class class wbr 5149  āŸ¶wf 6540  ā€˜cfv 6544  (class class class)co 7409  Fincfn 8939  ā„cr 11109  0cc0 11110  1c1 11111  +āˆžcpnf 11245  -āˆžcmnf 11246  ā„*cxr 11247   < clt 11248   ā‰¤ cle 11249  ā„•0cn0 12472   +š‘’ cxad 13090  [,)cico 13326  [,]cicc 13327  ā™Æchash 14290  Ī£csu 15632  Ī£*cesum 33025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-xnn0 12545  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-ordt 17447  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-ps 18519  df-tsr 18520  df-plusf 18560  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-cntz 19181  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-subrg 20317  df-abv 20425  df-lmod 20473  df-scaf 20474  df-sra 20785  df-rgmod 20786  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-tmd 23576  df-tgp 23577  df-tsms 23631  df-trg 23664  df-xms 23826  df-ms 23827  df-tms 23828  df-nm 24091  df-ngp 24092  df-nrg 24094  df-nlm 24095  df-ii 24393  df-cncf 24394  df-limc 25383  df-dv 25384  df-log 26065  df-esum 33026
This theorem is referenced by:  cntmeas  33224
  Copyright terms: Public domain W3C validator