Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   GIF version

Theorem hasheuni 34119
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 15735. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni ((𝐴𝑉Disj 𝑥𝐴 𝑥) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 5074 . . . . . . . 8 𝑥Disj 𝑥𝐴 𝑥
2 nfv 1915 . . . . . . . 8 𝑥 𝐴 ∈ Fin
3 nfv 1915 . . . . . . . 8 𝑥 𝐴 ⊆ Fin
41, 2, 3nf3an 1902 . . . . . . 7 𝑥(Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin)
5 simp2 1137 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 simp3 1138 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ Fin)
7 simp1 1136 . . . . . . 7 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑥𝐴 𝑥)
84, 5, 6, 7hashunif 32793 . . . . . 6 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ𝑥𝐴 (♯‘𝑥))
9 simpl 482 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
10 dfss3 3919 . . . . . . . . . . 11 (𝐴 ⊆ Fin ↔ ∀𝑥𝐴 𝑥 ∈ Fin)
11 hashcl 14265 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
12 nn0re 12397 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ ℕ0 → (♯‘𝑥) ∈ ℝ)
13 nn0ge0 12413 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ ℕ0 → 0 ≤ (♯‘𝑥))
14 elrege0 13356 . . . . . . . . . . . . . 14 ((♯‘𝑥) ∈ (0[,)+∞) ↔ ((♯‘𝑥) ∈ ℝ ∧ 0 ≤ (♯‘𝑥)))
1512, 13, 14sylanbrc 583 . . . . . . . . . . . . 13 ((♯‘𝑥) ∈ ℕ0 → (♯‘𝑥) ∈ (0[,)+∞))
1611, 15syl 17 . . . . . . . . . . . 12 (𝑥 ∈ Fin → (♯‘𝑥) ∈ (0[,)+∞))
1716ralimi 3070 . . . . . . . . . . 11 (∀𝑥𝐴 𝑥 ∈ Fin → ∀𝑥𝐴 (♯‘𝑥) ∈ (0[,)+∞))
1810, 17sylbi 217 . . . . . . . . . 10 (𝐴 ⊆ Fin → ∀𝑥𝐴 (♯‘𝑥) ∈ (0[,)+∞))
1918r19.21bi 3225 . . . . . . . . 9 ((𝐴 ⊆ Fin ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,)+∞))
2019adantll 714 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,)+∞))
219, 20esumpfinval 34109 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = Σ𝑥𝐴 (♯‘𝑥))
22213adant1 1130 . . . . . 6 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = Σ𝑥𝐴 (♯‘𝑥))
238, 22eqtr4d 2771 . . . . 5 ((Disj 𝑥𝐴 𝑥𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
24233adant1l 1177 . . . 4 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
25243expa 1118 . . 3 ((((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
26 uniexg 7679 . . . . . . . 8 (𝐴𝑉 𝐴 ∈ V)
2710notbii 320 . . . . . . . . . 10 𝐴 ⊆ Fin ↔ ¬ ∀𝑥𝐴 𝑥 ∈ Fin)
28 rexnal 3085 . . . . . . . . . 10 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin ↔ ¬ ∀𝑥𝐴 𝑥 ∈ Fin)
2927, 28bitr4i 278 . . . . . . . . 9 𝐴 ⊆ Fin ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ Fin)
30 elssuni 4889 . . . . . . . . . . 11 (𝑥𝐴𝑥 𝐴)
31 ssfi 9089 . . . . . . . . . . . . 13 (( 𝐴 ∈ Fin ∧ 𝑥 𝐴) → 𝑥 ∈ Fin)
3231expcom 413 . . . . . . . . . . . 12 (𝑥 𝐴 → ( 𝐴 ∈ Fin → 𝑥 ∈ Fin))
3332con3d 152 . . . . . . . . . . 11 (𝑥 𝐴 → (¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin))
3430, 33syl 17 . . . . . . . . . 10 (𝑥𝐴 → (¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin))
3534rexlimiv 3127 . . . . . . . . 9 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin → ¬ 𝐴 ∈ Fin)
3629, 35sylbi 217 . . . . . . . 8 𝐴 ⊆ Fin → ¬ 𝐴 ∈ Fin)
37 hashinf 14244 . . . . . . . 8 (( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = +∞)
3826, 36, 37syl2an 596 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = +∞)
39 vex 3441 . . . . . . . . . . 11 𝑥 ∈ V
40 hashinf 14244 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ ¬ 𝑥 ∈ Fin) → (♯‘𝑥) = +∞)
4139, 40mpan 690 . . . . . . . . . 10 𝑥 ∈ Fin → (♯‘𝑥) = +∞)
4241reximi 3071 . . . . . . . . 9 (∃𝑥𝐴 ¬ 𝑥 ∈ Fin → ∃𝑥𝐴 (♯‘𝑥) = +∞)
4329, 42sylbi 217 . . . . . . . 8 𝐴 ⊆ Fin → ∃𝑥𝐴 (♯‘𝑥) = +∞)
44 nfv 1915 . . . . . . . . . 10 𝑥 𝐴𝑉
45 nfre1 3258 . . . . . . . . . 10 𝑥𝑥𝐴 (♯‘𝑥) = +∞
4644, 45nfan 1900 . . . . . . . . 9 𝑥(𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞)
47 simpl 482 . . . . . . . . 9 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → 𝐴𝑉)
48 hashf2 34118 . . . . . . . . . . 11 ♯:V⟶(0[,]+∞)
49 ffvelcdm 7020 . . . . . . . . . . 11 ((♯:V⟶(0[,]+∞) ∧ 𝑥 ∈ V) → (♯‘𝑥) ∈ (0[,]+∞))
5048, 39, 49mp2an 692 . . . . . . . . . 10 (♯‘𝑥) ∈ (0[,]+∞)
5150a1i 11 . . . . . . . . 9 (((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) ∧ 𝑥𝐴) → (♯‘𝑥) ∈ (0[,]+∞))
52 simpr 484 . . . . . . . . 9 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → ∃𝑥𝐴 (♯‘𝑥) = +∞)
5346, 47, 51, 52esumpinfval 34107 . . . . . . . 8 ((𝐴𝑉 ∧ ∃𝑥𝐴 (♯‘𝑥) = +∞) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
5443, 53sylan2 593 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
5538, 54eqtr4d 2771 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
56553adant2 1131 . . . . 5 ((𝐴𝑉𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
57563adant1r 1178 . . . 4 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
58573expa 1118 . . 3 ((((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) ∧ ¬ 𝐴 ⊆ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
5925, 58pm2.61dan 812 . 2 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
60 pwfi 9210 . . . . . . 7 ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
61 pwuni 4896 . . . . . . . 8 𝐴 ⊆ 𝒫 𝐴
62 ssfi 9089 . . . . . . . 8 ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝒫 𝐴) → 𝐴 ∈ Fin)
6361, 62mpan2 691 . . . . . . 7 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
6460, 63sylbi 217 . . . . . 6 ( 𝐴 ∈ Fin → 𝐴 ∈ Fin)
6564con3i 154 . . . . 5 𝐴 ∈ Fin → ¬ 𝐴 ∈ Fin)
6626, 65, 37syl2an 596 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = +∞)
67 nftru 1805 . . . . . . . . 9 𝑥
68 unrab 4264 . . . . . . . . . . 11 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)}
69 exmid 894 . . . . . . . . . . . . 13 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)
7069rgenw 3052 . . . . . . . . . . . 12 𝑥𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)
71 rabid2 3429 . . . . . . . . . . . 12 (𝐴 = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)} ↔ ∀𝑥𝐴 ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0))
7270, 71mpbir 231 . . . . . . . . . . 11 𝐴 = {𝑥𝐴 ∣ ((♯‘𝑥) = 0 ∨ ¬ (♯‘𝑥) = 0)}
7368, 72eqtr4i 2759 . . . . . . . . . 10 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴
7473a1i 11 . . . . . . . . 9 (⊤ → ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = 𝐴)
7567, 74esumeq1d 34069 . . . . . . . 8 (⊤ → Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥𝐴(♯‘𝑥))
7675mptru 1548 . . . . . . 7 Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = Σ*𝑥𝐴(♯‘𝑥)
77 nfrab1 3416 . . . . . . . 8 𝑥{𝑥𝐴 ∣ (♯‘𝑥) = 0}
78 nfrab1 3416 . . . . . . . 8 𝑥{𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}
79 rabexg 5277 . . . . . . . 8 (𝐴𝑉 → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V)
80 rabexg 5277 . . . . . . . 8 (𝐴𝑉 → {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ V)
81 rabnc 4340 . . . . . . . . 9 ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = ∅
8281a1i 11 . . . . . . . 8 (𝐴𝑉 → ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∩ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) = ∅)
8350a1i 11 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
8450a1i 11 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 34087 . . . . . . 7 (𝐴𝑉 → Σ*𝑥 ∈ ({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∪ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
8676, 85eqtr3id 2782 . . . . . 6 (𝐴𝑉 → Σ*𝑥𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
8786adantr 480 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥𝐴(♯‘𝑥) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)))
88 nfv 1915 . . . . . . 7 𝑥(𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin)
8980adantr 480 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ V)
90 simpr 484 . . . . . . . . 9 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
91 dfrab3 4268 . . . . . . . . . . . 12 {𝑥𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0})
92 hasheq0 14272 . . . . . . . . . . . . . . . 16 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
9493abbii 2800 . . . . . . . . . . . . . 14 {𝑥 ∣ (♯‘𝑥) = 0} = {𝑥𝑥 = ∅}
95 df-sn 4576 . . . . . . . . . . . . . 14 {∅} = {𝑥𝑥 = ∅}
9694, 95eqtr4i 2759 . . . . . . . . . . . . 13 {𝑥 ∣ (♯‘𝑥) = 0} = {∅}
9796ineq2i 4166 . . . . . . . . . . . 12 (𝐴 ∩ {𝑥 ∣ (♯‘𝑥) = 0}) = (𝐴 ∩ {∅})
9891, 97eqtri 2756 . . . . . . . . . . 11 {𝑥𝐴 ∣ (♯‘𝑥) = 0} = (𝐴 ∩ {∅})
99 snfi 8972 . . . . . . . . . . . 12 {∅} ∈ Fin
100 inss2 4187 . . . . . . . . . . . 12 (𝐴 ∩ {∅}) ⊆ {∅}
101 ssfi 9089 . . . . . . . . . . . 12 (({∅} ∈ Fin ∧ (𝐴 ∩ {∅}) ⊆ {∅}) → (𝐴 ∩ {∅}) ∈ Fin)
10299, 100, 101mp2an 692 . . . . . . . . . . 11 (𝐴 ∩ {∅}) ∈ Fin
10398, 102eqeltri 2829 . . . . . . . . . 10 {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin
104103a1i 11 . . . . . . . . 9 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin)
105 difinf 9202 . . . . . . . . 9 ((¬ 𝐴 ∈ Fin ∧ {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ Fin) → ¬ (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin)
10690, 104, 105syl2anc 584 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin)
107 notrab 4271 . . . . . . . . 9 (𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) = {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}
108107eleq1i 2824 . . . . . . . 8 ((𝐴 ∖ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) ∈ Fin ↔ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ Fin)
109106, 108sylnib 328 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ∈ Fin)
11050a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
11139a1i 11 . . . . . . . 8 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ V)
112 simpr 484 . . . . . . . . . . 11 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0})
113 rabid 3417 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} ↔ (𝑥𝐴 ∧ ¬ (♯‘𝑥) = 0))
114112, 113sylib 218 . . . . . . . . . 10 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → (𝑥𝐴 ∧ ¬ (♯‘𝑥) = 0))
115114simprd 495 . . . . . . . . 9 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → ¬ (♯‘𝑥) = 0)
11693biimpri 228 . . . . . . . . . 10 (𝑥 = ∅ → (♯‘𝑥) = 0)
117116necon3bi 2955 . . . . . . . . 9 (¬ (♯‘𝑥) = 0 → 𝑥 ≠ ∅)
118115, 117syl 17 . . . . . . . 8 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 𝑥 ≠ ∅)
119 hashge1 14298 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → 1 ≤ (♯‘𝑥))
120111, 118, 119syl2anc 584 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0}) → 1 ≤ (♯‘𝑥))
121 1xr 11178 . . . . . . . 8 1 ∈ ℝ*
122121a1i 11 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 1 ∈ ℝ*)
123 0lt1 11646 . . . . . . . 8 0 < 1
124123a1i 11 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 0 < 1)
12588, 78, 89, 109, 110, 120, 122, 124esumpinfsum 34111 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥) = +∞)
126125oveq2d 7368 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 Σ*𝑥 ∈ {𝑥𝐴 ∣ ¬ (♯‘𝑥) = 0} (♯‘𝑥)) = (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞))
127 iccssxr 13332 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
12879adantr 480 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V)
12950a1i 11 . . . . . . . . 9 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0}) → (♯‘𝑥) ∈ (0[,]+∞))
130129ralrimiva 3125 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ∀𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
13177esumcl 34064 . . . . . . . 8 (({𝑥𝐴 ∣ (♯‘𝑥) = 0} ∈ V ∧ ∀𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞)) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
132128, 130, 131syl2anc 584 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞))
133127, 132sselid 3928 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ*)
134 xrge0neqmnf 13354 . . . . . . 7 *𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ (0[,]+∞) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞)
135132, 134syl 17 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞)
136 xaddpnf1 13127 . . . . . 6 ((Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ∈ ℝ* ∧ Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) ≠ -∞) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞) = +∞)
137133, 135, 136syl2anc 584 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (Σ*𝑥 ∈ {𝑥𝐴 ∣ (♯‘𝑥) = 0} (♯‘𝑥) +𝑒 +∞) = +∞)
13887, 126, 1373eqtrd 2772 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → Σ*𝑥𝐴(♯‘𝑥) = +∞)
13966, 138eqtr4d 2771 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
140139adantlr 715 . 2 (((𝐴𝑉Disj 𝑥𝐴 𝑥) ∧ ¬ 𝐴 ∈ Fin) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
14159, 140pm2.61dan 812 1 ((𝐴𝑉Disj 𝑥𝐴 𝑥) → (♯‘ 𝐴) = Σ*𝑥𝐴(♯‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wtru 1542  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575   cuni 4858  Disj wdisj 5060   class class class wbr 5093  wf 6482  cfv 6486  (class class class)co 7352  Fincfn 8875  cr 11012  0cc0 11013  1c1 11014  +∞cpnf 11150  -∞cmnf 11151  *cxr 11152   < clt 11153  cle 11154  0cn0 12388   +𝑒 cxad 13011  [,)cico 13249  [,]cicc 13250  chash 14239  Σcsu 15595  Σ*cesum 34061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-ordt 17407  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-ps 18474  df-tsr 18475  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20463  df-subrg 20487  df-abv 20726  df-lmod 20797  df-scaf 20798  df-sra 21109  df-rgmod 21110  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-tmd 23988  df-tgp 23989  df-tsms 24043  df-trg 24076  df-xms 24236  df-ms 24237  df-tms 24238  df-nm 24498  df-ngp 24499  df-nrg 24501  df-nlm 24502  df-ii 24798  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-esum 34062
This theorem is referenced by:  cntmeas  34260
  Copyright terms: Public domain W3C validator