Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotth Structured version   Visualization version   GIF version

Theorem ballotth 34512
Description: Bertrand's ballot problem : the probability that A is ahead throughout the counting. The proof formalized here is a proof "by reflection", as opposed to other known proofs "by induction" or "by permutation". This is Metamath 100 proof #30. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotth (𝑃𝐸) = ((𝑀𝑁) / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐,𝐹   𝑥,𝑀   𝑥,𝑁,𝑘,𝑖   𝑥,𝐸   𝑥,𝑂
Allowed substitution hints:   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐼(𝑥)

Proof of Theorem ballotth
StepHypRef Expression
1 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
2 ssrab2 4031 . . . . . 6 {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)} ⊆ 𝑂
31, 2eqsstri 3982 . . . . 5 𝐸𝑂
4 fzfi 13879 . . . . . . . . . . 11 (1...(𝑀 + 𝑁)) ∈ Fin
5 pwfi 9208 . . . . . . . . . . 11 ((1...(𝑀 + 𝑁)) ∈ Fin ↔ 𝒫 (1...(𝑀 + 𝑁)) ∈ Fin)
64, 5mpbi 230 . . . . . . . . . 10 𝒫 (1...(𝑀 + 𝑁)) ∈ Fin
7 ballotth.o . . . . . . . . . . 11 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
8 ssrab2 4031 . . . . . . . . . . 11 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
97, 8eqsstri 3982 . . . . . . . . . 10 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
10 ssfi 9087 . . . . . . . . . 10 ((𝒫 (1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))) → 𝑂 ∈ Fin)
116, 9, 10mp2an 692 . . . . . . . . 9 𝑂 ∈ Fin
12 ssfi 9087 . . . . . . . . 9 ((𝑂 ∈ Fin ∧ 𝐸𝑂) → 𝐸 ∈ Fin)
1311, 3, 12mp2an 692 . . . . . . . 8 𝐸 ∈ Fin
1413elexi 3459 . . . . . . 7 𝐸 ∈ V
1514elpw 4555 . . . . . 6 (𝐸 ∈ 𝒫 𝑂𝐸𝑂)
16 fveq2 6822 . . . . . . . 8 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
1716oveq1d 7364 . . . . . . 7 (𝑥 = 𝐸 → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘𝐸) / (♯‘𝑂)))
18 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
19 ovex 7382 . . . . . . 7 ((♯‘𝐸) / (♯‘𝑂)) ∈ V
2017, 18, 19fvmpt 6930 . . . . . 6 (𝐸 ∈ 𝒫 𝑂 → (𝑃𝐸) = ((♯‘𝐸) / (♯‘𝑂)))
2115, 20sylbir 235 . . . . 5 (𝐸𝑂 → (𝑃𝐸) = ((♯‘𝐸) / (♯‘𝑂)))
223, 21ax-mp 5 . . . 4 (𝑃𝐸) = ((♯‘𝐸) / (♯‘𝑂))
23 hashssdif 14319 . . . . . . . 8 ((𝑂 ∈ Fin ∧ 𝐸𝑂) → (♯‘(𝑂𝐸)) = ((♯‘𝑂) − (♯‘𝐸)))
2411, 3, 23mp2an 692 . . . . . . 7 (♯‘(𝑂𝐸)) = ((♯‘𝑂) − (♯‘𝐸))
2524eqcomi 2738 . . . . . 6 ((♯‘𝑂) − (♯‘𝐸)) = (♯‘(𝑂𝐸))
26 hashcl 14263 . . . . . . . . 9 (𝑂 ∈ Fin → (♯‘𝑂) ∈ ℕ0)
2711, 26ax-mp 5 . . . . . . . 8 (♯‘𝑂) ∈ ℕ0
2827nn0cni 12396 . . . . . . 7 (♯‘𝑂) ∈ ℂ
29 hashcl 14263 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘𝐸) ∈ ℕ0)
3013, 29ax-mp 5 . . . . . . . 8 (♯‘𝐸) ∈ ℕ0
3130nn0cni 12396 . . . . . . 7 (♯‘𝐸) ∈ ℂ
32 difss 4087 . . . . . . . . . 10 (𝑂𝐸) ⊆ 𝑂
33 ssfi 9087 . . . . . . . . . 10 ((𝑂 ∈ Fin ∧ (𝑂𝐸) ⊆ 𝑂) → (𝑂𝐸) ∈ Fin)
3411, 32, 33mp2an 692 . . . . . . . . 9 (𝑂𝐸) ∈ Fin
35 hashcl 14263 . . . . . . . . 9 ((𝑂𝐸) ∈ Fin → (♯‘(𝑂𝐸)) ∈ ℕ0)
3634, 35ax-mp 5 . . . . . . . 8 (♯‘(𝑂𝐸)) ∈ ℕ0
3736nn0cni 12396 . . . . . . 7 (♯‘(𝑂𝐸)) ∈ ℂ
3828, 31, 37subsub23i 11454 . . . . . 6 (((♯‘𝑂) − (♯‘𝐸)) = (♯‘(𝑂𝐸)) ↔ ((♯‘𝑂) − (♯‘(𝑂𝐸))) = (♯‘𝐸))
3925, 38mpbi 230 . . . . 5 ((♯‘𝑂) − (♯‘(𝑂𝐸))) = (♯‘𝐸)
4039oveq1i 7359 . . . 4 (((♯‘𝑂) − (♯‘(𝑂𝐸))) / (♯‘𝑂)) = ((♯‘𝐸) / (♯‘𝑂))
4122, 40eqtr4i 2755 . . 3 (𝑃𝐸) = (((♯‘𝑂) − (♯‘(𝑂𝐸))) / (♯‘𝑂))
42 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
43 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
4442, 43, 7ballotlem1 34461 . . . . . 6 (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀)
4542nnnn0i 12392 . . . . . . . . 9 𝑀 ∈ ℕ0
46 nnaddcl 12151 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
4742, 43, 46mp2an 692 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℕ
4847nnnn0i 12392 . . . . . . . . 9 (𝑀 + 𝑁) ∈ ℕ0
4942nnrei 12137 . . . . . . . . . 10 𝑀 ∈ ℝ
5043nnnn0i 12392 . . . . . . . . . 10 𝑁 ∈ ℕ0
5149, 50nn0addge1i 12432 . . . . . . . . 9 𝑀 ≤ (𝑀 + 𝑁)
52 elfz2nn0 13521 . . . . . . . . 9 (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ (𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑀 ≤ (𝑀 + 𝑁)))
5345, 48, 51, 52mpbir3an 1342 . . . . . . . 8 𝑀 ∈ (0...(𝑀 + 𝑁))
54 bccl2 14230 . . . . . . . 8 (𝑀 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁)C𝑀) ∈ ℕ)
5553, 54ax-mp 5 . . . . . . 7 ((𝑀 + 𝑁)C𝑀) ∈ ℕ
5655nnne0i 12168 . . . . . 6 ((𝑀 + 𝑁)C𝑀) ≠ 0
5744, 56eqnetri 2995 . . . . 5 (♯‘𝑂) ≠ 0
5828, 57pm3.2i 470 . . . 4 ((♯‘𝑂) ∈ ℂ ∧ (♯‘𝑂) ≠ 0)
59 divsubdir 11818 . . . 4 (((♯‘𝑂) ∈ ℂ ∧ (♯‘(𝑂𝐸)) ∈ ℂ ∧ ((♯‘𝑂) ∈ ℂ ∧ (♯‘𝑂) ≠ 0)) → (((♯‘𝑂) − (♯‘(𝑂𝐸))) / (♯‘𝑂)) = (((♯‘𝑂) / (♯‘𝑂)) − ((♯‘(𝑂𝐸)) / (♯‘𝑂))))
6028, 37, 58, 59mp3an 1463 . . 3 (((♯‘𝑂) − (♯‘(𝑂𝐸))) / (♯‘𝑂)) = (((♯‘𝑂) / (♯‘𝑂)) − ((♯‘(𝑂𝐸)) / (♯‘𝑂)))
6128, 57dividi 11857 . . . 4 ((♯‘𝑂) / (♯‘𝑂)) = 1
6261oveq1i 7359 . . 3 (((♯‘𝑂) / (♯‘𝑂)) − ((♯‘(𝑂𝐸)) / (♯‘𝑂))) = (1 − ((♯‘(𝑂𝐸)) / (♯‘𝑂)))
6341, 60, 623eqtri 2756 . 2 (𝑃𝐸) = (1 − ((♯‘(𝑂𝐸)) / (♯‘𝑂)))
64 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
65 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
66 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
67 ballotth.s . . . . . . 7 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
68 ballotth.r . . . . . . 7 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
6942, 43, 7, 18, 64, 1, 65, 66, 67, 68ballotlem8 34511 . . . . . 6 (♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
7069oveq1i 7359 . . . . 5 ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
7170oveq1i 7359 . . . 4 (((♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂)) = (((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂))
72 rabxm 4341 . . . . . . 7 (𝑂𝐸) = ({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
7372fveq2i 6825 . . . . . 6 (♯‘(𝑂𝐸)) = (♯‘({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
74 ssrab2 4031 . . . . . . . . . 10 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ (𝑂𝐸)
7574, 32sstri 3945 . . . . . . . . 9 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝑂
7675, 9sstri 3945 . . . . . . . 8 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))
77 ssfi 9087 . . . . . . . 8 ((𝒫 (1...(𝑀 + 𝑁)) ∈ Fin ∧ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))) → {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∈ Fin)
786, 76, 77mp2an 692 . . . . . . 7 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∈ Fin
79 ssrab2 4031 . . . . . . . . . 10 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ (𝑂𝐸)
8079, 32sstri 3945 . . . . . . . . 9 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
8180, 9sstri 3945 . . . . . . . 8 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))
82 ssfi 9087 . . . . . . . 8 ((𝒫 (1...(𝑀 + 𝑁)) ∈ Fin ∧ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))) → {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin)
836, 81, 82mp2an 692 . . . . . . 7 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin
84 rabnc 4342 . . . . . . 7 ({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∩ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) = ∅
85 hashun 14289 . . . . . . 7 (({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∈ Fin ∧ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin ∧ ({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∩ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) = ∅) → (♯‘({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})))
8678, 83, 84, 85mp3an 1463 . . . . . 6 (♯‘({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
8773, 86eqtri 2752 . . . . 5 (♯‘(𝑂𝐸)) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
8887oveq1i 7359 . . . 4 ((♯‘(𝑂𝐸)) / (♯‘𝑂)) = (((♯‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂))
89 ssrab2 4031 . . . . . . . . 9 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
9011elexi 3459 . . . . . . . . . 10 𝑂 ∈ V
9190elpw2 5273 . . . . . . . . 9 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 ↔ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂)
9289, 91mpbir 231 . . . . . . . 8 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
93 fveq2 6822 . . . . . . . . . 10 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
9493oveq1d 7364 . . . . . . . . 9 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
95 ovex 7382 . . . . . . . . 9 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) ∈ V
9694, 18, 95fvmpt 6930 . . . . . . . 8 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
9792, 96ax-mp 5 . . . . . . 7 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
9842, 43, 7, 18ballotlem2 34463 . . . . . . 7 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
99 nfrab1 3415 . . . . . . . . . . . 12 𝑐{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
100 nfrab1 3415 . . . . . . . . . . . 12 𝑐{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
10199, 100dfssf 3926 . . . . . . . . . . 11 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐(𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
10242, 43, 7, 18, 64, 1ballotlem4 34473 . . . . . . . . . . . . . 14 (𝑐𝑂 → (¬ 1 ∈ 𝑐 → ¬ 𝑐𝐸))
103102imdistani 568 . . . . . . . . . . . . 13 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) → (𝑐𝑂 ∧ ¬ 𝑐𝐸))
104 rabid 3416 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
105 eldif 3913 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑂𝐸) ↔ (𝑐𝑂 ∧ ¬ 𝑐𝐸))
106103, 104, 1053imtr4i 292 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ (𝑂𝐸))
107104simprbi 496 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ¬ 1 ∈ 𝑐)
108 rabid 3416 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐))
109106, 107, 108sylanbrc 583 . . . . . . . . . . 11 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
110101, 109mpgbir 1799 . . . . . . . . . 10 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
111 rabss2 4029 . . . . . . . . . . 11 ((𝑂𝐸) ⊆ 𝑂 → {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
11232, 111ax-mp 5 . . . . . . . . . 10 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
113110, 112eqssi 3952 . . . . . . . . 9 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} = {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
114113fveq2i 6825 . . . . . . . 8 (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
115114oveq1i 7359 . . . . . . 7 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
11697, 98, 1153eqtr3i 2760 . . . . . 6 (𝑁 / (𝑀 + 𝑁)) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
117116oveq2i 7360 . . . . 5 (2 · (𝑁 / (𝑀 + 𝑁))) = (2 · ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
118 2cn 12203 . . . . . 6 2 ∈ ℂ
119 hashcl 14263 . . . . . . . 8 ({𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin → (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈ ℕ0)
12083, 119ax-mp 5 . . . . . . 7 (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈ ℕ0
121120nn0cni 12396 . . . . . 6 (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈ ℂ
122118, 121, 28, 57divassi 11880 . . . . 5 ((2 · (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂)) = (2 · ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
1231212timesi 12261 . . . . . 6 (2 · (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
124123oveq1i 7359 . . . . 5 ((2 · (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂)) = (((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂))
125117, 122, 1243eqtr2i 2758 . . . 4 (2 · (𝑁 / (𝑀 + 𝑁))) = (((♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (♯‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (♯‘𝑂))
12671, 88, 1253eqtr4ri 2763 . . 3 (2 · (𝑁 / (𝑀 + 𝑁))) = ((♯‘(𝑂𝐸)) / (♯‘𝑂))
127126oveq2i 7360 . 2 (1 − (2 · (𝑁 / (𝑀 + 𝑁)))) = (1 − ((♯‘(𝑂𝐸)) / (♯‘𝑂)))
12847nncni 12138 . . . 4 (𝑀 + 𝑁) ∈ ℂ
12943nncni 12138 . . . . 5 𝑁 ∈ ℂ
130118, 129mulcli 11122 . . . 4 (2 · 𝑁) ∈ ℂ
13147nnne0i 12168 . . . . 5 (𝑀 + 𝑁) ≠ 0
132128, 131pm3.2i 470 . . . 4 ((𝑀 + 𝑁) ∈ ℂ ∧ (𝑀 + 𝑁) ≠ 0)
133 divsubdir 11818 . . . 4 (((𝑀 + 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ (𝑀 + 𝑁) ≠ 0)) → (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁))))
134128, 130, 132, 133mp3an 1463 . . 3 (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁)))
1351292timesi 12261 . . . . . 6 (2 · 𝑁) = (𝑁 + 𝑁)
136135oveq2i 7360 . . . . 5 ((𝑀 + 𝑁) − (2 · 𝑁)) = ((𝑀 + 𝑁) − (𝑁 + 𝑁))
13742nncni 12138 . . . . . . 7 𝑀 ∈ ℂ
138137, 129, 129, 129addsub4i 11460 . . . . . 6 ((𝑀 + 𝑁) − (𝑁 + 𝑁)) = ((𝑀𝑁) + (𝑁𝑁))
139129subidi 11435 . . . . . . 7 (𝑁𝑁) = 0
140139oveq2i 7360 . . . . . 6 ((𝑀𝑁) + (𝑁𝑁)) = ((𝑀𝑁) + 0)
141137, 129subcli 11440 . . . . . . 7 (𝑀𝑁) ∈ ℂ
142141addridi 11303 . . . . . 6 ((𝑀𝑁) + 0) = (𝑀𝑁)
143138, 140, 1423eqtri 2756 . . . . 5 ((𝑀 + 𝑁) − (𝑁 + 𝑁)) = (𝑀𝑁)
144136, 143eqtri 2752 . . . 4 ((𝑀 + 𝑁) − (2 · 𝑁)) = (𝑀𝑁)
145144oveq1i 7359 . . 3 (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = ((𝑀𝑁) / (𝑀 + 𝑁))
146128, 131dividi 11857 . . . 4 ((𝑀 + 𝑁) / (𝑀 + 𝑁)) = 1
147118, 129, 128, 131divassi 11880 . . . 4 ((2 · 𝑁) / (𝑀 + 𝑁)) = (2 · (𝑁 / (𝑀 + 𝑁)))
148146, 147oveq12i 7361 . . 3 (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁))) = (1 − (2 · (𝑁 / (𝑀 + 𝑁))))
149134, 145, 1483eqtr3ri 2761 . 2 (1 − (2 · (𝑁 / (𝑀 + 𝑁)))) = ((𝑀𝑁) / (𝑀 + 𝑁))
15063, 127, 1493eqtr2i 2758 1 (𝑃𝐸) = ((𝑀𝑁) / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  cdif 3900  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  cima 5622  cfv 6482  (class class class)co 7349  Fincfn 8872  infcinf 9331  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cz 12471  ...cfz 13410  Ccbc 14209  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-seq 13909  df-fac 14181  df-bc 14210  df-hash 14238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator