| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabsspr | Structured version Visualization version GIF version | ||
| Description: Conditions for a restricted class abstraction to be a subset of an unordered pair. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| rabsspr | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3416 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 2 | dfpr2 4622 | . . 3 ⊢ {𝑋, 𝑌} = {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)} | |
| 3 | 1, 2 | sseq12i 3989 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)}) |
| 4 | ss2ab 4037 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) | |
| 5 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)) ↔ (𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)))) | |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)))) |
| 7 | df-ral 3052 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌)) ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) |
| 9 | 3, 4, 8 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋, 𝑌} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → (𝑥 = 𝑋 ∨ 𝑥 = 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 {crab 3415 ⊆ wss 3926 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: constrfin 33780 |
| Copyright terms: Public domain | W3C validator |