| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raldifeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
| Ref | Expression |
|---|---|
| raldifeq.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| raldifeq.2 | ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) |
| Ref | Expression |
|---|---|
| raldifeq | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raldifeq.2 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) | |
| 2 | 1 | biantrud 531 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓))) |
| 3 | ralunb 4177 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝜓 ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓)) | |
| 4 | 2, 3 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝜓)) |
| 5 | raldifeq.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 6 | undif 4462 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 8 | 7 | raleqdv 3309 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 9 | 4, 8 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∀wral 3050 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 |
| This theorem is referenced by: cantnfrescl 9697 rrxmet 25377 ntrneiel2 44037 ntrneik4w 44051 |
| Copyright terms: Public domain | W3C validator |