MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifeq Structured version   Visualization version   GIF version

Theorem raldifeq 4421
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.)
Hypotheses
Ref Expression
raldifeq.1 (𝜑𝐴𝐵)
raldifeq.2 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
Assertion
Ref Expression
raldifeq (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raldifeq
StepHypRef Expression
1 raldifeq.2 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
21biantrud 531 . . 3 (𝜑 → (∀𝑥𝐴 𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓)))
3 ralunb 4121 . . 3 (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓))
42, 3bitr4di 288 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓))
5 raldifeq.1 . . . 4 (𝜑𝐴𝐵)
6 undif 4412 . . . 4 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
75, 6sylib 217 . . 3 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
87raleqdv 3339 . 2 (𝜑 → (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ ∀𝑥𝐵 𝜓))
94, 8bitrd 278 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wral 3063  cdif 3880  cun 3881  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  cantnfrescl  9364  rrxmet  24477  ntrneiel2  41585  ntrneik4w  41599
  Copyright terms: Public domain W3C validator