![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raldifeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.) |
Ref | Expression |
---|---|
raldifeq.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
raldifeq.2 | ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) |
Ref | Expression |
---|---|
raldifeq | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raldifeq.2 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓) | |
2 | 1 | biantrud 531 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓))) |
3 | ralunb 4220 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝜓 ↔ (∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵 ∖ 𝐴)𝜓)) | |
4 | 2, 3 | bitr4di 289 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝜓)) |
5 | raldifeq.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
6 | undif 4505 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
8 | 7 | raleqdv 3334 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴))𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
9 | 4, 8 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 |
This theorem is referenced by: cantnfrescl 9745 rrxmet 25461 ntrneiel2 44048 ntrneik4w 44062 |
Copyright terms: Public domain | W3C validator |