Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnfrescl | Structured version Visualization version GIF version |
Description: A function is finitely supported from 𝐵 to 𝐴 iff the extended function is finitely supported from 𝐷 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfrescl.d | ⊢ (𝜑 → 𝐷 ∈ On) |
cantnfrescl.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐷) |
cantnfrescl.x | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) |
cantnfrescl.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
cantnfrescl.t | ⊢ 𝑇 = dom (𝐴 CNF 𝐷) |
Ref | Expression |
---|---|
cantnfrescl | ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfrescl.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐷) | |
2 | cantnfrescl.x | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) | |
3 | cantnfrescl.a | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → ∅ ∈ 𝐴) |
5 | 2, 4 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 ∈ 𝐴) |
6 | 5 | ralrimiva 3103 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ (𝐷 ∖ 𝐵)𝑋 ∈ 𝐴) |
7 | 1, 6 | raldifeq 4424 | . . . 4 ⊢ (𝜑 → (∀𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ∀𝑛 ∈ 𝐷 𝑋 ∈ 𝐴)) |
8 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ 𝐵 ↦ 𝑋) = (𝑛 ∈ 𝐵 ↦ 𝑋) | |
9 | 8 | fmpt 6984 | . . . 4 ⊢ (∀𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ (𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴) |
10 | eqid 2738 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 ↦ 𝑋) = (𝑛 ∈ 𝐷 ↦ 𝑋) | |
11 | 10 | fmpt 6984 | . . . 4 ⊢ (∀𝑛 ∈ 𝐷 𝑋 ∈ 𝐴 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴) |
12 | 7, 9, 11 | 3bitr3g 313 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴)) |
13 | cantnfs.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
14 | 13 | mptexd 7100 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V) |
15 | funmpt 6472 | . . . . . 6 ⊢ Fun (𝑛 ∈ 𝐵 ↦ 𝑋) | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) |
17 | cantnfrescl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ On) | |
18 | 17 | mptexd 7100 | . . . . . 6 ⊢ (𝜑 → (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V) |
19 | funmpt 6472 | . . . . . 6 ⊢ Fun (𝑛 ∈ 𝐷 ↦ 𝑋) | |
20 | 18, 19 | jctir 521 | . . . . 5 ⊢ (𝜑 → ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋))) |
21 | 14, 16, 20 | jca31 515 | . . . 4 ⊢ (𝜑 → (((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) ∧ ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋)))) |
22 | 17, 1, 2 | extmptsuppeq 8004 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) |
23 | suppeqfsuppbi 9142 | . . . 4 ⊢ ((((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) ∧ ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋))) → (((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅) → ((𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅ ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) | |
24 | 21, 22, 23 | sylc 65 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅ ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅)) |
25 | 12, 24 | anbi12d 631 | . 2 ⊢ (𝜑 → (((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ∧ (𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅) ↔ ((𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴 ∧ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
26 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
27 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
28 | 26, 27, 13 | cantnfs 9424 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ ((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ∧ (𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅))) |
29 | cantnfrescl.t | . . 3 ⊢ 𝑇 = dom (𝐴 CNF 𝐷) | |
30 | 29, 27, 17 | cantnfs 9424 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇 ↔ ((𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴 ∧ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
31 | 25, 28, 30 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 Oncon0 6266 Fun wfun 6427 ⟶wf 6429 (class class class)co 7275 supp csupp 7977 finSupp cfsupp 9128 CNF ccnf 9419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seqom 8279 df-map 8617 df-fsupp 9129 df-cnf 9420 |
This theorem is referenced by: cantnfres 9435 |
Copyright terms: Public domain | W3C validator |