![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnfrescl | Structured version Visualization version GIF version |
Description: A function is finitely supported from 𝐵 to 𝐴 iff the extended function is finitely supported from 𝐷 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) |
Ref | Expression |
---|---|
cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
cantnfrescl.d | ⊢ (𝜑 → 𝐷 ∈ On) |
cantnfrescl.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐷) |
cantnfrescl.x | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) |
cantnfrescl.a | ⊢ (𝜑 → ∅ ∈ 𝐴) |
cantnfrescl.t | ⊢ 𝑇 = dom (𝐴 CNF 𝐷) |
Ref | Expression |
---|---|
cantnfrescl | ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfrescl.b | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐷) | |
2 | cantnfrescl.x | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) | |
3 | cantnfrescl.a | . . . . . . . 8 ⊢ (𝜑 → ∅ ∈ 𝐴) | |
4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → ∅ ∈ 𝐴) |
5 | 2, 4 | eqeltrd 2841 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 ∈ 𝐴) |
6 | 5 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ (𝐷 ∖ 𝐵)𝑋 ∈ 𝐴) |
7 | 1, 6 | raldifeq 4503 | . . . 4 ⊢ (𝜑 → (∀𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ ∀𝑛 ∈ 𝐷 𝑋 ∈ 𝐴)) |
8 | eqid 2737 | . . . . 5 ⊢ (𝑛 ∈ 𝐵 ↦ 𝑋) = (𝑛 ∈ 𝐵 ↦ 𝑋) | |
9 | 8 | fmpt 7137 | . . . 4 ⊢ (∀𝑛 ∈ 𝐵 𝑋 ∈ 𝐴 ↔ (𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴) |
10 | eqid 2737 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 ↦ 𝑋) = (𝑛 ∈ 𝐷 ↦ 𝑋) | |
11 | 10 | fmpt 7137 | . . . 4 ⊢ (∀𝑛 ∈ 𝐷 𝑋 ∈ 𝐴 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴) |
12 | 7, 9, 11 | 3bitr3g 313 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴)) |
13 | cantnfs.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ On) | |
14 | 13 | mptexd 7251 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V) |
15 | funmpt 6612 | . . . . . 6 ⊢ Fun (𝑛 ∈ 𝐵 ↦ 𝑋) | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) |
17 | cantnfrescl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ On) | |
18 | 17 | mptexd 7251 | . . . . . 6 ⊢ (𝜑 → (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V) |
19 | funmpt 6612 | . . . . . 6 ⊢ Fun (𝑛 ∈ 𝐷 ↦ 𝑋) | |
20 | 18, 19 | jctir 520 | . . . . 5 ⊢ (𝜑 → ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋))) |
21 | 14, 16, 20 | jca31 514 | . . . 4 ⊢ (𝜑 → (((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) ∧ ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋)))) |
22 | 17, 1, 2 | extmptsuppeq 8221 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) |
23 | suppeqfsuppbi 9426 | . . . 4 ⊢ ((((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐵 ↦ 𝑋)) ∧ ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ V ∧ Fun (𝑛 ∈ 𝐷 ↦ 𝑋))) → (((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅) → ((𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅ ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) | |
24 | 21, 22, 23 | sylc 65 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅ ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅)) |
25 | 12, 24 | anbi12d 632 | . 2 ⊢ (𝜑 → (((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ∧ (𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅) ↔ ((𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴 ∧ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
26 | cantnfs.s | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
27 | cantnfs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
28 | 26, 27, 13 | cantnfs 9713 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ ((𝑛 ∈ 𝐵 ↦ 𝑋):𝐵⟶𝐴 ∧ (𝑛 ∈ 𝐵 ↦ 𝑋) finSupp ∅))) |
29 | cantnfrescl.t | . . 3 ⊢ 𝑇 = dom (𝐴 CNF 𝐷) | |
30 | 29, 27, 17 | cantnfs 9713 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇 ↔ ((𝑛 ∈ 𝐷 ↦ 𝑋):𝐷⟶𝐴 ∧ (𝑛 ∈ 𝐷 ↦ 𝑋) finSupp ∅))) |
31 | 25, 28, 30 | 3bitr4d 311 | 1 ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 ∖ cdif 3963 ⊆ wss 3966 ∅c0 4342 class class class wbr 5151 ↦ cmpt 5234 dom cdm 5693 Oncon0 6392 Fun wfun 6563 ⟶wf 6565 (class class class)co 7438 supp csupp 8193 finSupp cfsupp 9408 CNF ccnf 9708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-supp 8194 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-seqom 8496 df-map 8876 df-fsupp 9409 df-cnf 9709 |
This theorem is referenced by: cantnfres 9724 |
Copyright terms: Public domain | W3C validator |