MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfrescl Structured version   Visualization version   GIF version

Theorem cantnfrescl 9697
Description: A function is finitely supported from 𝐵 to 𝐴 iff the extended function is finitely supported from 𝐷 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
Assertion
Ref Expression
cantnfrescl (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfrescl
StepHypRef Expression
1 cantnfrescl.b . . . . 5 (𝜑𝐵𝐷)
2 cantnfrescl.x . . . . . . 7 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
3 cantnfrescl.a . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
43adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (𝐷𝐵)) → ∅ ∈ 𝐴)
52, 4eqeltrd 2833 . . . . . 6 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋𝐴)
65ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑛 ∈ (𝐷𝐵)𝑋𝐴)
71, 6raldifeq 4474 . . . 4 (𝜑 → (∀𝑛𝐵 𝑋𝐴 ↔ ∀𝑛𝐷 𝑋𝐴))
8 eqid 2734 . . . . 5 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
98fmpt 7109 . . . 4 (∀𝑛𝐵 𝑋𝐴 ↔ (𝑛𝐵𝑋):𝐵𝐴)
10 eqid 2734 . . . . 5 (𝑛𝐷𝑋) = (𝑛𝐷𝑋)
1110fmpt 7109 . . . 4 (∀𝑛𝐷 𝑋𝐴 ↔ (𝑛𝐷𝑋):𝐷𝐴)
127, 9, 113bitr3g 313 . . 3 (𝜑 → ((𝑛𝐵𝑋):𝐵𝐴 ↔ (𝑛𝐷𝑋):𝐷𝐴))
13 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
1413mptexd 7225 . . . . 5 (𝜑 → (𝑛𝐵𝑋) ∈ V)
15 funmpt 6583 . . . . . 6 Fun (𝑛𝐵𝑋)
1615a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝐵𝑋))
17 cantnfrescl.d . . . . . . 7 (𝜑𝐷 ∈ On)
1817mptexd 7225 . . . . . 6 (𝜑 → (𝑛𝐷𝑋) ∈ V)
19 funmpt 6583 . . . . . 6 Fun (𝑛𝐷𝑋)
2018, 19jctir 520 . . . . 5 (𝜑 → ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋)))
2114, 16, 20jca31 514 . . . 4 (𝜑 → (((𝑛𝐵𝑋) ∈ V ∧ Fun (𝑛𝐵𝑋)) ∧ ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋))))
2217, 1, 2extmptsuppeq 8194 . . . 4 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
23 suppeqfsuppbi 9400 . . . 4 ((((𝑛𝐵𝑋) ∈ V ∧ Fun (𝑛𝐵𝑋)) ∧ ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋))) → (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → ((𝑛𝐵𝑋) finSupp ∅ ↔ (𝑛𝐷𝑋) finSupp ∅)))
2421, 22, 23sylc 65 . . 3 (𝜑 → ((𝑛𝐵𝑋) finSupp ∅ ↔ (𝑛𝐷𝑋) finSupp ∅))
2512, 24anbi12d 632 . 2 (𝜑 → (((𝑛𝐵𝑋):𝐵𝐴 ∧ (𝑛𝐵𝑋) finSupp ∅) ↔ ((𝑛𝐷𝑋):𝐷𝐴 ∧ (𝑛𝐷𝑋) finSupp ∅)))
26 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
27 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2826, 27, 13cantnfs 9687 . 2 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ ((𝑛𝐵𝑋):𝐵𝐴 ∧ (𝑛𝐵𝑋) finSupp ∅)))
29 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
3029, 27, 17cantnfs 9687 . 2 (𝜑 → ((𝑛𝐷𝑋) ∈ 𝑇 ↔ ((𝑛𝐷𝑋):𝐷𝐴 ∧ (𝑛𝐷𝑋) finSupp ∅)))
3125, 28, 303bitr4d 311 1 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  cdif 3928  wss 3931  c0 4313   class class class wbr 5123  cmpt 5205  dom cdm 5665  Oncon0 6363  Fun wfun 6534  wf 6536  (class class class)co 7412   supp csupp 8166   finSupp cfsupp 9382   CNF ccnf 9682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-supp 8167  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-seqom 8469  df-map 8849  df-fsupp 9383  df-cnf 9683
This theorem is referenced by:  cantnfres  9698
  Copyright terms: Public domain W3C validator