MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfrescl Structured version   Visualization version   GIF version

Theorem cantnfrescl 9572
Description: A function is finitely supported from 𝐵 to 𝐴 iff the extended function is finitely supported from 𝐷 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
Assertion
Ref Expression
cantnfrescl (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfrescl
StepHypRef Expression
1 cantnfrescl.b . . . . 5 (𝜑𝐵𝐷)
2 cantnfrescl.x . . . . . . 7 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
3 cantnfrescl.a . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
43adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (𝐷𝐵)) → ∅ ∈ 𝐴)
52, 4eqeltrd 2828 . . . . . 6 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋𝐴)
65ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑛 ∈ (𝐷𝐵)𝑋𝐴)
71, 6raldifeq 4445 . . . 4 (𝜑 → (∀𝑛𝐵 𝑋𝐴 ↔ ∀𝑛𝐷 𝑋𝐴))
8 eqid 2729 . . . . 5 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
98fmpt 7044 . . . 4 (∀𝑛𝐵 𝑋𝐴 ↔ (𝑛𝐵𝑋):𝐵𝐴)
10 eqid 2729 . . . . 5 (𝑛𝐷𝑋) = (𝑛𝐷𝑋)
1110fmpt 7044 . . . 4 (∀𝑛𝐷 𝑋𝐴 ↔ (𝑛𝐷𝑋):𝐷𝐴)
127, 9, 113bitr3g 313 . . 3 (𝜑 → ((𝑛𝐵𝑋):𝐵𝐴 ↔ (𝑛𝐷𝑋):𝐷𝐴))
13 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
1413mptexd 7160 . . . . 5 (𝜑 → (𝑛𝐵𝑋) ∈ V)
15 funmpt 6520 . . . . . 6 Fun (𝑛𝐵𝑋)
1615a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝐵𝑋))
17 cantnfrescl.d . . . . . . 7 (𝜑𝐷 ∈ On)
1817mptexd 7160 . . . . . 6 (𝜑 → (𝑛𝐷𝑋) ∈ V)
19 funmpt 6520 . . . . . 6 Fun (𝑛𝐷𝑋)
2018, 19jctir 520 . . . . 5 (𝜑 → ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋)))
2114, 16, 20jca31 514 . . . 4 (𝜑 → (((𝑛𝐵𝑋) ∈ V ∧ Fun (𝑛𝐵𝑋)) ∧ ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋))))
2217, 1, 2extmptsuppeq 8121 . . . 4 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
23 suppeqfsuppbi 9269 . . . 4 ((((𝑛𝐵𝑋) ∈ V ∧ Fun (𝑛𝐵𝑋)) ∧ ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋))) → (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → ((𝑛𝐵𝑋) finSupp ∅ ↔ (𝑛𝐷𝑋) finSupp ∅)))
2421, 22, 23sylc 65 . . 3 (𝜑 → ((𝑛𝐵𝑋) finSupp ∅ ↔ (𝑛𝐷𝑋) finSupp ∅))
2512, 24anbi12d 632 . 2 (𝜑 → (((𝑛𝐵𝑋):𝐵𝐴 ∧ (𝑛𝐵𝑋) finSupp ∅) ↔ ((𝑛𝐷𝑋):𝐷𝐴 ∧ (𝑛𝐷𝑋) finSupp ∅)))
26 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
27 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2826, 27, 13cantnfs 9562 . 2 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ ((𝑛𝐵𝑋):𝐵𝐴 ∧ (𝑛𝐵𝑋) finSupp ∅)))
29 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
3029, 27, 17cantnfs 9562 . 2 (𝜑 → ((𝑛𝐷𝑋) ∈ 𝑇 ↔ ((𝑛𝐷𝑋):𝐷𝐴 ∧ (𝑛𝐷𝑋) finSupp ∅)))
3125, 28, 303bitr4d 311 1 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cdif 3900  wss 3903  c0 4284   class class class wbr 5092  cmpt 5173  dom cdm 5619  Oncon0 6307  Fun wfun 6476  wf 6478  (class class class)co 7349   supp csupp 8093   finSupp cfsupp 9251   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-map 8755  df-fsupp 9252  df-cnf 9558
This theorem is referenced by:  cantnfres  9573
  Copyright terms: Public domain W3C validator