MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfrescl Structured version   Visualization version   GIF version

Theorem cantnfrescl 9629
Description: A function is finitely supported from 𝐵 to 𝐴 iff the extended function is finitely supported from 𝐷 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
Assertion
Ref Expression
cantnfrescl (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfrescl
StepHypRef Expression
1 cantnfrescl.b . . . . 5 (𝜑𝐵𝐷)
2 cantnfrescl.x . . . . . . 7 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
3 cantnfrescl.a . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
43adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (𝐷𝐵)) → ∅ ∈ 𝐴)
52, 4eqeltrd 2828 . . . . . 6 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋𝐴)
65ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑛 ∈ (𝐷𝐵)𝑋𝐴)
71, 6raldifeq 4457 . . . 4 (𝜑 → (∀𝑛𝐵 𝑋𝐴 ↔ ∀𝑛𝐷 𝑋𝐴))
8 eqid 2729 . . . . 5 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
98fmpt 7082 . . . 4 (∀𝑛𝐵 𝑋𝐴 ↔ (𝑛𝐵𝑋):𝐵𝐴)
10 eqid 2729 . . . . 5 (𝑛𝐷𝑋) = (𝑛𝐷𝑋)
1110fmpt 7082 . . . 4 (∀𝑛𝐷 𝑋𝐴 ↔ (𝑛𝐷𝑋):𝐷𝐴)
127, 9, 113bitr3g 313 . . 3 (𝜑 → ((𝑛𝐵𝑋):𝐵𝐴 ↔ (𝑛𝐷𝑋):𝐷𝐴))
13 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
1413mptexd 7198 . . . . 5 (𝜑 → (𝑛𝐵𝑋) ∈ V)
15 funmpt 6554 . . . . . 6 Fun (𝑛𝐵𝑋)
1615a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝐵𝑋))
17 cantnfrescl.d . . . . . . 7 (𝜑𝐷 ∈ On)
1817mptexd 7198 . . . . . 6 (𝜑 → (𝑛𝐷𝑋) ∈ V)
19 funmpt 6554 . . . . . 6 Fun (𝑛𝐷𝑋)
2018, 19jctir 520 . . . . 5 (𝜑 → ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋)))
2114, 16, 20jca31 514 . . . 4 (𝜑 → (((𝑛𝐵𝑋) ∈ V ∧ Fun (𝑛𝐵𝑋)) ∧ ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋))))
2217, 1, 2extmptsuppeq 8167 . . . 4 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
23 suppeqfsuppbi 9330 . . . 4 ((((𝑛𝐵𝑋) ∈ V ∧ Fun (𝑛𝐵𝑋)) ∧ ((𝑛𝐷𝑋) ∈ V ∧ Fun (𝑛𝐷𝑋))) → (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → ((𝑛𝐵𝑋) finSupp ∅ ↔ (𝑛𝐷𝑋) finSupp ∅)))
2421, 22, 23sylc 65 . . 3 (𝜑 → ((𝑛𝐵𝑋) finSupp ∅ ↔ (𝑛𝐷𝑋) finSupp ∅))
2512, 24anbi12d 632 . 2 (𝜑 → (((𝑛𝐵𝑋):𝐵𝐴 ∧ (𝑛𝐵𝑋) finSupp ∅) ↔ ((𝑛𝐷𝑋):𝐷𝐴 ∧ (𝑛𝐷𝑋) finSupp ∅)))
26 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
27 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2826, 27, 13cantnfs 9619 . 2 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ ((𝑛𝐵𝑋):𝐵𝐴 ∧ (𝑛𝐵𝑋) finSupp ∅)))
29 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
3029, 27, 17cantnfs 9619 . 2 (𝜑 → ((𝑛𝐷𝑋) ∈ 𝑇 ↔ ((𝑛𝐷𝑋):𝐷𝐴 ∧ (𝑛𝐷𝑋) finSupp ∅)))
3125, 28, 303bitr4d 311 1 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  dom cdm 5638  Oncon0 6332  Fun wfun 6505  wf 6507  (class class class)co 7387   supp csupp 8139   finSupp cfsupp 9312   CNF ccnf 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-map 8801  df-fsupp 9313  df-cnf 9615
This theorem is referenced by:  cantnfres  9630
  Copyright terms: Public domain W3C validator