MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmet Structured version   Visualization version   GIF version

Theorem rrxmet 24477
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmet (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   ,𝐼   ,𝑉
Allowed substitution hints:   𝐷()   𝑋()

Proof of Theorem rrxmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
2 simprl 767 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
31, 2rrxfsupp 24471 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ∈ Fin)
4 simprr 769 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
51, 4rrxfsupp 24471 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ∈ Fin)
6 unfi 8917 . . . . . . . 8 (((𝑥 supp 0) ∈ Fin ∧ (𝑦 supp 0) ∈ Fin) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
73, 5, 6syl2anc 583 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
81, 2rrxsuppss 24472 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
91, 4rrxsuppss 24472 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
108, 9unssd 4116 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1110sselda 3917 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 𝑘𝐼)
121, 2rrxf 24470 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
1312ffvelrnda 6943 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
141, 4rrxf 24470 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1514ffvelrnda 6943 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
1613, 15resubcld 11333 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1716resqcld 13893 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1811, 17syldan 590 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
197, 18fsumrecl 15374 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
2016sqge0d 13894 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
2111, 20syldan 590 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
227, 18, 21fsumge0 15435 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
2319, 22resqrtcld 15057 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
2423ralrimivva 3114 . . . 4 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
25 eqid 2738 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
2625fmpo 7881 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2724, 26sylib 217 . . 3 (𝐼𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
28 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
291, 28rrxmfval 24475 . . . 4 (𝐼𝑉𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))))
3029feq1d 6569 . . 3 (𝐼𝑉 → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
3127, 30mpbird 256 . 2 (𝐼𝑉𝐷:(𝑋 × 𝑋)⟶ℝ)
32 sqrt00 14903 . . . . . . 7 ((Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3319, 22, 32syl2anc 583 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
347, 18, 21fsum00 15438 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3516recnd 10934 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
36 sqeq0 13768 . . . . . . . . . 10 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3735, 36syl 17 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3813recnd 10934 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3915recnd 10934 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
4038, 39subeq0ad 11272 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4137, 40bitrd 278 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4211, 41syldan 590 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4342ralbidva 3119 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
4433, 34, 433bitrd 304 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
451, 28rrxmval 24474 . . . . . . 7 ((𝐼𝑉𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
46453expb 1118 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
4746eqeq1d 2740 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
4812ffnd 6585 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4914ffnd 6585 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
50 eqfnfv 6891 . . . . . . 7 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
5148, 49, 50syl2anc 583 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
52 ssun1 4102 . . . . . . . . . . 11 (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5352a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
54 simpl 482 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
55 0red 10909 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ∈ ℝ)
5612, 53, 54, 55suppssr 7983 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = 0)
57 ssun2 4103 . . . . . . . . . . 11 (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5857a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
5914, 58, 54, 55suppssr 7983 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑦𝑘) = 0)
6056, 59eqtr4d 2781 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = (𝑦𝑘))
6160ralrimiva 3107 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))(𝑥𝑘) = (𝑦𝑘))
6210, 61raldifeq 4421 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘) ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
6351, 62bitr4d 281 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
6444, 47, 633bitr4d 310 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6573adant2 1129 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
66 simp2 1135 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑧𝑋)
671, 66rrxfsupp 24471 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ∈ Fin)
68 unfi 8917 . . . . . . . . . . 11 ((((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin ∧ (𝑧 supp 0) ∈ Fin) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
6965, 67, 68syl2anc 583 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
70693expa 1116 . . . . . . . . 9 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7170an32s 648 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7210adantr 480 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
73 simpr 484 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
741, 73rrxsuppss 24472 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧 supp 0) ⊆ 𝐼)
7572, 74unssd 4116 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
7675sselda 3917 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → 𝑘𝐼)
7713adantlr 711 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
781, 73rrxf 24470 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
7978ffvelrnda 6943 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
8077, 79resubcld 11333 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8176, 80syldan 590 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8215adantlr 711 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
8379, 82resubcld 11333 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8476, 83syldan 590 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8571, 81, 84trirn 24469 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
8638adantlr 711 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
8779recnd 10934 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
8839adantlr 711 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
8986, 87, 88npncand 11286 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
9089oveq1d 7270 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9176, 90syldan 590 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9291sumeq2dv 15343 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
9392fveq2d 6760 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
94 sqsubswap 13765 . . . . . . . . . . . 12 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9586, 87, 94syl2anc 583 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9676, 95syldan 590 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9796sumeq2dv 15343 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
9897fveq2d 6760 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
9998oveq1d 7270 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10085, 93, 993brtr3d 5101 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10146adantr 480 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
102 simp1 1134 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
10323adant2 1129 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
10443adant2 1129 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
1051, 103rrxsuppss 24472 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
1061, 104rrxsuppss 24472 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
107105, 106unssd 4116 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1081, 66rrxsuppss 24472 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ 𝐼)
109107, 108unssd 4116 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
110 ssun1 4102 . . . . . . . . . . . 12 ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
111110a1i 11 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1121, 28, 102, 103, 104, 109, 69, 111rrxmetlem 24476 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
113112fveq2d 6760 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1141133expa 1116 . . . . . . . 8 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
115114an32s 648 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
116101, 115eqtrd 2778 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1171, 28rrxmval 24474 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1181173adant3r 1179 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1191, 28rrxmval 24474 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
1201193adant3l 1178 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
121118, 120oveq12d 7273 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
122 ssun2 4103 . . . . . . . . . . . . . 14 (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
123122a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
12452, 110sstri 3926 . . . . . . . . . . . . . 14 (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
125124a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
126123, 125unssd 4116 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑥 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1271, 28, 102, 66, 103, 109, 69, 126rrxmetlem 24476 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
128127fveq2d 6760 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
12957, 110sstri 3926 . . . . . . . . . . . . . 14 (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
130129a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
131123, 130unssd 4116 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1321, 28, 102, 66, 104, 109, 69, 131rrxmetlem 24476 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))
133132fveq2d 6760 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
134128, 133oveq12d 7273 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
135121, 134eqtrd 2778 . . . . . . . 8 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
1361353expa 1116 . . . . . . 7 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
137136an32s 648 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
138100, 116, 1373brtr4d 5102 . . . . 5 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
139138ralrimiva 3107 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
14064, 139jca 511 . . 3 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
141140ralrimivva 3114 . 2 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
142 ovex 7288 . . . 4 (ℝ ↑m 𝐼) ∈ V
1431, 142rabex2 5253 . . 3 𝑋 ∈ V
144 ismet 23384 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
145143, 144ax-mp 5 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14631, 141, 145sylanbrc 582 1 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883   class class class wbr 5070   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  cr 10801  0cc0 10802   + caddc 10805  cle 10941  cmin 11135  2c2 11958  cexp 13710  csqrt 14872  Σcsu 15325  distcds 16897  Metcmet 20496  ℝ^crrx 24452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-met 20504  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454
This theorem is referenced by:  rrxdstprj1  24478  rrxmetfi  24481
  Copyright terms: Public domain W3C validator