MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmet Structured version   Visualization version   GIF version

Theorem rrxmet 25306
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmet (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   ,𝐼   ,𝑉
Allowed substitution hints:   𝐷()   𝑋()

Proof of Theorem rrxmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
2 simprl 770 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
31, 2rrxfsupp 25300 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ∈ Fin)
4 simprr 772 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
51, 4rrxfsupp 25300 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ∈ Fin)
6 unfi 9085 . . . . . . . 8 (((𝑥 supp 0) ∈ Fin ∧ (𝑦 supp 0) ∈ Fin) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
73, 5, 6syl2anc 584 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
81, 2rrxsuppss 25301 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
91, 4rrxsuppss 25301 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
108, 9unssd 4143 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1110sselda 3935 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 𝑘𝐼)
121, 2rrxf 25299 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
1312ffvelcdmda 7018 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
141, 4rrxf 25299 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1514ffvelcdmda 7018 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
1613, 15resubcld 11548 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1716resqcld 14032 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1811, 17syldan 591 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
197, 18fsumrecl 15641 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
2016sqge0d 14044 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
2111, 20syldan 591 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
227, 18, 21fsumge0 15702 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
2319, 22resqrtcld 15325 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
2423ralrimivva 3172 . . . 4 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
25 eqid 2729 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
2625fmpo 8003 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2724, 26sylib 218 . . 3 (𝐼𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
28 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
291, 28rrxmfval 25304 . . . 4 (𝐼𝑉𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))))
3029feq1d 6634 . . 3 (𝐼𝑉 → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
3127, 30mpbird 257 . 2 (𝐼𝑉𝐷:(𝑋 × 𝑋)⟶ℝ)
32 sqrt00 15170 . . . . . . 7 ((Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3319, 22, 32syl2anc 584 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
347, 18, 21fsum00 15705 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3516recnd 11143 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
36 sqeq0 14027 . . . . . . . . . 10 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3735, 36syl 17 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3813recnd 11143 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3915recnd 11143 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
4038, 39subeq0ad 11485 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4137, 40bitrd 279 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4211, 41syldan 591 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4342ralbidva 3150 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
4433, 34, 433bitrd 305 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
451, 28rrxmval 25303 . . . . . . 7 ((𝐼𝑉𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
46453expb 1120 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
4746eqeq1d 2731 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
4812ffnd 6653 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4914ffnd 6653 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
50 eqfnfv 6965 . . . . . . 7 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
5148, 49, 50syl2anc 584 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
52 ssun1 4129 . . . . . . . . . . 11 (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5352a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
54 simpl 482 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
55 0red 11118 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ∈ ℝ)
5612, 53, 54, 55suppssr 8128 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = 0)
57 ssun2 4130 . . . . . . . . . . 11 (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5857a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
5914, 58, 54, 55suppssr 8128 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑦𝑘) = 0)
6056, 59eqtr4d 2767 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = (𝑦𝑘))
6160ralrimiva 3121 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))(𝑥𝑘) = (𝑦𝑘))
6210, 61raldifeq 4445 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘) ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
6351, 62bitr4d 282 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
6444, 47, 633bitr4d 311 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6573adant2 1131 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
66 simp2 1137 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑧𝑋)
671, 66rrxfsupp 25300 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ∈ Fin)
68 unfi 9085 . . . . . . . . . . 11 ((((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin ∧ (𝑧 supp 0) ∈ Fin) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
6965, 67, 68syl2anc 584 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
70693expa 1118 . . . . . . . . 9 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7170an32s 652 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7210adantr 480 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
73 simpr 484 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
741, 73rrxsuppss 25301 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧 supp 0) ⊆ 𝐼)
7572, 74unssd 4143 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
7675sselda 3935 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → 𝑘𝐼)
7713adantlr 715 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
781, 73rrxf 25299 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
7978ffvelcdmda 7018 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
8077, 79resubcld 11548 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8176, 80syldan 591 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8215adantlr 715 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
8379, 82resubcld 11548 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8476, 83syldan 591 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8571, 81, 84trirn 25298 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
8638adantlr 715 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
8779recnd 11143 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
8839adantlr 715 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
8986, 87, 88npncand 11499 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
9089oveq1d 7364 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9176, 90syldan 591 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9291sumeq2dv 15609 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
9392fveq2d 6826 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
94 sqsubswap 14024 . . . . . . . . . . . 12 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9586, 87, 94syl2anc 584 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9676, 95syldan 591 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9796sumeq2dv 15609 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
9897fveq2d 6826 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
9998oveq1d 7364 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10085, 93, 993brtr3d 5123 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10146adantr 480 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
102 simp1 1136 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
10323adant2 1131 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
10443adant2 1131 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
1051, 103rrxsuppss 25301 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
1061, 104rrxsuppss 25301 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
107105, 106unssd 4143 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1081, 66rrxsuppss 25301 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ 𝐼)
109107, 108unssd 4143 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
110 ssun1 4129 . . . . . . . . . . . 12 ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
111110a1i 11 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1121, 28, 102, 103, 104, 109, 69, 111rrxmetlem 25305 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
113112fveq2d 6826 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1141133expa 1118 . . . . . . . 8 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
115114an32s 652 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
116101, 115eqtrd 2764 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1171, 28rrxmval 25303 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1181173adant3r 1182 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1191, 28rrxmval 25303 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
1201193adant3l 1181 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
121118, 120oveq12d 7367 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
122 ssun2 4130 . . . . . . . . . . . . . 14 (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
123122a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
12452, 110sstri 3945 . . . . . . . . . . . . . 14 (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
125124a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
126123, 125unssd 4143 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑥 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1271, 28, 102, 66, 103, 109, 69, 126rrxmetlem 25305 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
128127fveq2d 6826 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
12957, 110sstri 3945 . . . . . . . . . . . . . 14 (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
130129a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
131123, 130unssd 4143 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1321, 28, 102, 66, 104, 109, 69, 131rrxmetlem 25305 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))
133132fveq2d 6826 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
134128, 133oveq12d 7367 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
135121, 134eqtrd 2764 . . . . . . . 8 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
1361353expa 1118 . . . . . . 7 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
137136an32s 652 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
138100, 116, 1373brtr4d 5124 . . . . 5 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
139138ralrimiva 3121 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
14064, 139jca 511 . . 3 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
141140ralrimivva 3172 . 2 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
142 ovex 7382 . . . 4 (ℝ ↑m 𝐼) ∈ V
1431, 142rabex2 5280 . . 3 𝑋 ∈ V
144 ismet 24209 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
145143, 144ax-mp 5 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14631, 141, 145sylanbrc 583 1 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  cdif 3900  cun 3901  wss 3903   class class class wbr 5092   × cxp 5617   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  cc 11007  cr 11008  0cc0 11009   + caddc 11012  cle 11150  cmin 11347  2c2 12183  cexp 13968  csqrt 15140  Σcsu 15593  distcds 17170  Metcmet 21247  ℝ^crrx 25281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-drng 20616  df-field 20617  df-staf 20724  df-srng 20725  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-met 21255  df-cnfld 21262  df-refld 21512  df-dsmm 21639  df-frlm 21654  df-nm 24468  df-tng 24470  df-tcph 25067  df-rrx 25283
This theorem is referenced by:  rrxdstprj1  25307  rrxmetfi  25310
  Copyright terms: Public domain W3C validator