MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmet Structured version   Visualization version   GIF version

Theorem rrxmet 25461
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmet (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   ,𝐼   ,𝑉
Allowed substitution hints:   𝐷()   𝑋()

Proof of Theorem rrxmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
2 simprl 770 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
31, 2rrxfsupp 25455 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ∈ Fin)
4 simprr 772 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
51, 4rrxfsupp 25455 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ∈ Fin)
6 unfi 9238 . . . . . . . 8 (((𝑥 supp 0) ∈ Fin ∧ (𝑦 supp 0) ∈ Fin) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
73, 5, 6syl2anc 583 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
81, 2rrxsuppss 25456 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
91, 4rrxsuppss 25456 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
108, 9unssd 4215 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1110sselda 4008 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 𝑘𝐼)
121, 2rrxf 25454 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
1312ffvelcdmda 7118 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
141, 4rrxf 25454 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1514ffvelcdmda 7118 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
1613, 15resubcld 11718 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1716resqcld 14175 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1811, 17syldan 590 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
197, 18fsumrecl 15782 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
2016sqge0d 14187 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
2111, 20syldan 590 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
227, 18, 21fsumge0 15843 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
2319, 22resqrtcld 15466 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
2423ralrimivva 3208 . . . 4 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
25 eqid 2740 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
2625fmpo 8109 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2724, 26sylib 218 . . 3 (𝐼𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
28 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
291, 28rrxmfval 25459 . . . 4 (𝐼𝑉𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))))
3029feq1d 6732 . . 3 (𝐼𝑉 → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
3127, 30mpbird 257 . 2 (𝐼𝑉𝐷:(𝑋 × 𝑋)⟶ℝ)
32 sqrt00 15312 . . . . . . 7 ((Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3319, 22, 32syl2anc 583 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
347, 18, 21fsum00 15846 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3516recnd 11318 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
36 sqeq0 14170 . . . . . . . . . 10 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3735, 36syl 17 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3813recnd 11318 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3915recnd 11318 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
4038, 39subeq0ad 11657 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4137, 40bitrd 279 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4211, 41syldan 590 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4342ralbidva 3182 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
4433, 34, 433bitrd 305 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
451, 28rrxmval 25458 . . . . . . 7 ((𝐼𝑉𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
46453expb 1120 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
4746eqeq1d 2742 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
4812ffnd 6748 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4914ffnd 6748 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
50 eqfnfv 7064 . . . . . . 7 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
5148, 49, 50syl2anc 583 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
52 ssun1 4201 . . . . . . . . . . 11 (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5352a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
54 simpl 482 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
55 0red 11293 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ∈ ℝ)
5612, 53, 54, 55suppssr 8236 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = 0)
57 ssun2 4202 . . . . . . . . . . 11 (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5857a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
5914, 58, 54, 55suppssr 8236 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑦𝑘) = 0)
6056, 59eqtr4d 2783 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = (𝑦𝑘))
6160ralrimiva 3152 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))(𝑥𝑘) = (𝑦𝑘))
6210, 61raldifeq 4517 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘) ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
6351, 62bitr4d 282 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
6444, 47, 633bitr4d 311 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6573adant2 1131 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
66 simp2 1137 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑧𝑋)
671, 66rrxfsupp 25455 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ∈ Fin)
68 unfi 9238 . . . . . . . . . . 11 ((((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin ∧ (𝑧 supp 0) ∈ Fin) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
6965, 67, 68syl2anc 583 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
70693expa 1118 . . . . . . . . 9 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7170an32s 651 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7210adantr 480 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
73 simpr 484 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
741, 73rrxsuppss 25456 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧 supp 0) ⊆ 𝐼)
7572, 74unssd 4215 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
7675sselda 4008 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → 𝑘𝐼)
7713adantlr 714 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
781, 73rrxf 25454 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
7978ffvelcdmda 7118 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
8077, 79resubcld 11718 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8176, 80syldan 590 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8215adantlr 714 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
8379, 82resubcld 11718 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8476, 83syldan 590 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8571, 81, 84trirn 25453 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
8638adantlr 714 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
8779recnd 11318 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
8839adantlr 714 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
8986, 87, 88npncand 11671 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
9089oveq1d 7463 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9176, 90syldan 590 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9291sumeq2dv 15750 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
9392fveq2d 6924 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
94 sqsubswap 14167 . . . . . . . . . . . 12 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9586, 87, 94syl2anc 583 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9676, 95syldan 590 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9796sumeq2dv 15750 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
9897fveq2d 6924 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
9998oveq1d 7463 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10085, 93, 993brtr3d 5197 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10146adantr 480 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
102 simp1 1136 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
10323adant2 1131 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
10443adant2 1131 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
1051, 103rrxsuppss 25456 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
1061, 104rrxsuppss 25456 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
107105, 106unssd 4215 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1081, 66rrxsuppss 25456 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ 𝐼)
109107, 108unssd 4215 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
110 ssun1 4201 . . . . . . . . . . . 12 ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
111110a1i 11 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1121, 28, 102, 103, 104, 109, 69, 111rrxmetlem 25460 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
113112fveq2d 6924 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1141133expa 1118 . . . . . . . 8 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
115114an32s 651 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
116101, 115eqtrd 2780 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1171, 28rrxmval 25458 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1181173adant3r 1181 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1191, 28rrxmval 25458 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
1201193adant3l 1180 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
121118, 120oveq12d 7466 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
122 ssun2 4202 . . . . . . . . . . . . . 14 (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
123122a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
12452, 110sstri 4018 . . . . . . . . . . . . . 14 (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
125124a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
126123, 125unssd 4215 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑥 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1271, 28, 102, 66, 103, 109, 69, 126rrxmetlem 25460 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
128127fveq2d 6924 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
12957, 110sstri 4018 . . . . . . . . . . . . . 14 (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
130129a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
131123, 130unssd 4215 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1321, 28, 102, 66, 104, 109, 69, 131rrxmetlem 25460 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))
133132fveq2d 6924 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
134128, 133oveq12d 7466 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
135121, 134eqtrd 2780 . . . . . . . 8 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
1361353expa 1118 . . . . . . 7 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
137136an32s 651 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
138100, 116, 1373brtr4d 5198 . . . . 5 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
139138ralrimiva 3152 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
14064, 139jca 511 . . 3 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
141140ralrimivva 3208 . 2 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
142 ovex 7481 . . . 4 (ℝ ↑m 𝐼) ∈ V
1431, 142rabex2 5359 . . 3 𝑋 ∈ V
144 ismet 24354 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
145143, 144ax-mp 5 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14631, 141, 145sylanbrc 582 1 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976   class class class wbr 5166   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  cc 11182  cr 11183  0cc0 11184   + caddc 11187  cle 11325  cmin 11520  2c2 12348  cexp 14112  csqrt 15282  Σcsu 15734  distcds 17320  Metcmet 21373  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-met 21381  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438
This theorem is referenced by:  rrxdstprj1  25462  rrxmetfi  25465
  Copyright terms: Public domain W3C validator