Step | Hyp | Ref
| Expression |
1 | | rrxmval.1 |
. . . . . . . . 9
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
2 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
3 | 1, 2 | rrxfsupp 24566 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 supp 0) ∈ Fin) |
4 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
5 | 1, 4 | rrxfsupp 24566 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 supp 0) ∈ Fin) |
6 | | unfi 8955 |
. . . . . . . 8
⊢ (((𝑥 supp 0) ∈ Fin ∧ (𝑦 supp 0) ∈ Fin) →
((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈
Fin) |
7 | 3, 5, 6 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin) |
8 | 1, 2 | rrxsuppss 24567 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 supp 0) ⊆ 𝐼) |
9 | 1, 4 | rrxsuppss 24567 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 supp 0) ⊆ 𝐼) |
10 | 8, 9 | unssd 4120 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼) |
11 | 10 | sselda 3921 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 𝑘 ∈ 𝐼) |
12 | 1, 2 | rrxf 24565 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥:𝐼⟶ℝ) |
13 | 12 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℝ) |
14 | 1, 4 | rrxf 24565 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦:𝐼⟶ℝ) |
15 | 14 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℝ) |
16 | 13, 15 | resubcld 11403 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝑥‘𝑘) − (𝑦‘𝑘)) ∈ ℝ) |
17 | 16 | resqcld 13965 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ) |
18 | 11, 17 | syldan 591 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ) |
19 | 7, 18 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ) |
20 | 16 | sqge0d 13966 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
21 | 11, 20 | syldan 591 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 0 ≤ (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
22 | 7, 18, 21 | fsumge0 15507 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
23 | 19, 22 | resqrtcld 15129 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ ℝ) |
24 | 23 | ralrimivva 3123 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ ℝ) |
25 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
26 | 25 | fmpo 7908 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ ℝ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ) |
27 | 24, 26 | sylib 217 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ) |
28 | | rrxmval.d |
. . . . 5
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
29 | 1, 28 | rrxmfval 24570 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
30 | 29 | feq1d 6585 |
. . 3
⊢ (𝐼 ∈ 𝑉 → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)) |
31 | 27, 30 | mpbird 256 |
. 2
⊢ (𝐼 ∈ 𝑉 → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
32 | | sqrt00 14975 |
. . . . . . 7
⊢
((Σ𝑘 ∈
((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) ∈ ℝ ∧ 0 ≤
Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) →
((√‘Σ𝑘
∈ ((𝑥 supp 0) ∪
(𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
33 | 19, 22, 32 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
34 | 7, 18, 21 | fsum00 15510 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0)) |
35 | 16 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝑥‘𝑘) − (𝑦‘𝑘)) ∈ ℂ) |
36 | | sqeq0 13840 |
. . . . . . . . . 10
⊢ (((𝑥‘𝑘) − (𝑦‘𝑘)) ∈ ℂ → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ((𝑥‘𝑘) − (𝑦‘𝑘)) = 0)) |
37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ((𝑥‘𝑘) − (𝑦‘𝑘)) = 0)) |
38 | 13 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℂ) |
39 | 15 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℂ) |
40 | 38, 39 | subeq0ad 11342 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑦‘𝑘)) = 0 ↔ (𝑥‘𝑘) = (𝑦‘𝑘))) |
41 | 37, 40 | bitrd 278 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ (𝑥‘𝑘) = (𝑦‘𝑘))) |
42 | 11, 41 | syldan 591 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → ((((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ (𝑥‘𝑘) = (𝑦‘𝑘))) |
43 | 42 | ralbidva 3111 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥‘𝑘) = (𝑦‘𝑘))) |
44 | 33, 34, 43 | 3bitrd 305 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥‘𝑘) = (𝑦‘𝑘))) |
45 | 1, 28 | rrxmval 24569 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
46 | 45 | 3expb 1119 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
47 | 46 | eqeq1d 2740 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = 0)) |
48 | 12 | ffnd 6601 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 Fn 𝐼) |
49 | 14 | ffnd 6601 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 Fn 𝐼) |
50 | | eqfnfv 6909 |
. . . . . . 7
⊢ ((𝑥 Fn 𝐼 ∧ 𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
51 | 48, 49, 50 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
52 | | ssun1 4106 |
. . . . . . . . . . 11
⊢ (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)) |
53 | 52 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))) |
54 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐼 ∈ 𝑉) |
55 | | 0red 10978 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ∈ ℝ) |
56 | 12, 53, 54, 55 | suppssr 8012 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥‘𝑘) = 0) |
57 | | ssun2 4107 |
. . . . . . . . . . 11
⊢ (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)) |
58 | 57 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))) |
59 | 14, 58, 54, 55 | suppssr 8012 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑦‘𝑘) = 0) |
60 | 56, 59 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥‘𝑘) = (𝑦‘𝑘)) |
61 | 60 | ralrimiva 3103 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ∀𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))(𝑥‘𝑘) = (𝑦‘𝑘)) |
62 | 10, 61 | raldifeq 4424 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥‘𝑘) = (𝑦‘𝑘) ↔ ∀𝑘 ∈ 𝐼 (𝑥‘𝑘) = (𝑦‘𝑘))) |
63 | 51, 62 | bitr4d 281 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥‘𝑘) = (𝑦‘𝑘))) |
64 | 44, 47, 63 | 3bitr4d 311 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
65 | 7 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin) |
66 | | simp2 1136 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
67 | 1, 66 | rrxfsupp 24566 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧 supp 0) ∈ Fin) |
68 | | unfi 8955 |
. . . . . . . . . . 11
⊢ ((((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin ∧
(𝑧 supp 0) ∈ Fin)
→ (((𝑥 supp 0) ∪
(𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈
Fin) |
69 | 65, 67, 68 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin) |
70 | 69 | 3expa 1117 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin) |
71 | 70 | an32s 649 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin) |
72 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼) |
73 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
74 | 1, 73 | rrxsuppss 24567 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧 supp 0) ⊆ 𝐼) |
75 | 72, 74 | unssd 4120 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼) |
76 | 75 | sselda 3921 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → 𝑘 ∈ 𝐼) |
77 | 13 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℝ) |
78 | 1, 73 | rrxf 24565 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧:𝐼⟶ℝ) |
79 | 78 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑧‘𝑘) ∈ ℝ) |
80 | 77, 79 | resubcld 11403 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑥‘𝑘) − (𝑧‘𝑘)) ∈ ℝ) |
81 | 76, 80 | syldan 591 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑥‘𝑘) − (𝑧‘𝑘)) ∈ ℝ) |
82 | 15 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℝ) |
83 | 79, 82 | resubcld 11403 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑧‘𝑘) − (𝑦‘𝑘)) ∈ ℝ) |
84 | 76, 83 | syldan 591 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑧‘𝑘) − (𝑦‘𝑘)) ∈ ℝ) |
85 | 71, 81, 84 | trirn 24564 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2)) ≤
((√‘Σ𝑘
∈ (((𝑥 supp 0) ∪
(𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑧‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
86 | 38 | adantlr 712 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑥‘𝑘) ∈ ℂ) |
87 | 79 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑧‘𝑘) ∈ ℂ) |
88 | 39 | adantlr 712 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑦‘𝑘) ∈ ℂ) |
89 | 86, 87, 88 | npncand 11356 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘))) = ((𝑥‘𝑘) − (𝑦‘𝑘))) |
90 | 89 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2) = (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
91 | 76, 90 | syldan 591 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2) = (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
92 | 91 | sumeq2dv 15415 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
93 | 92 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥‘𝑘) − (𝑧‘𝑘)) + ((𝑧‘𝑘) − (𝑦‘𝑘)))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
94 | | sqsubswap 13837 |
. . . . . . . . . . . 12
⊢ (((𝑥‘𝑘) ∈ ℂ ∧ (𝑧‘𝑘) ∈ ℂ) → (((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
95 | 86, 87, 94 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
96 | 76, 95 | syldan 591 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → (((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = (((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
97 | 96 | sumeq2dv 15415 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑧‘𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
98 | 97 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑧‘𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
99 | 98 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑧‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
100 | 85, 93, 99 | 3brtr3d 5105 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
101 | 46 | adantr 481 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
102 | | simp1 1135 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐼 ∈ 𝑉) |
103 | 2 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
104 | 4 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
105 | 1, 103 | rrxsuppss 24567 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 supp 0) ⊆ 𝐼) |
106 | 1, 104 | rrxsuppss 24567 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 supp 0) ⊆ 𝐼) |
107 | 105, 106 | unssd 4120 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼) |
108 | 1, 66 | rrxsuppss 24567 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧 supp 0) ⊆ 𝐼) |
109 | 107, 108 | unssd 4120 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼) |
110 | | ssun1 4106 |
. . . . . . . . . . . 12
⊢ ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) |
111 | 110 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) |
112 | 1, 28, 102, 103, 104, 109, 69, 111 | rrxmetlem 24571 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) |
113 | 112 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
114 | 113 | 3expa 1117 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
115 | 114 | an32s 649 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
116 | 101, 115 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
117 | 1, 28 | rrxmval 24569 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
118 | 117 | 3adant3r 1180 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
119 | 1, 28 | rrxmval 24569 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) |
120 | 119 | 3adant3l 1179 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) |
121 | 118, 120 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
122 | | ssun2 4107 |
. . . . . . . . . . . . . 14
⊢ (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) |
123 | 122 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) |
124 | 52, 110 | sstri 3930 |
. . . . . . . . . . . . . 14
⊢ (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) |
125 | 124 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) |
126 | 123, 125 | unssd 4120 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧 supp 0) ∪ (𝑥 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) |
127 | 1, 28, 102, 66, 103, 109, 69, 126 | rrxmetlem 24571 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) |
128 | 127 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2))) |
129 | 57, 110 | sstri 3930 |
. . . . . . . . . . . . . 14
⊢ (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) |
130 | 129 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) |
131 | 123, 130 | unssd 4120 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) |
132 | 1, 28, 102, 66, 104, 109, 69, 131 | rrxmetlem 24571 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)) |
133 | 132 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) |
134 | 128, 133 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
135 | 121, 134 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
136 | 135 | 3expa 1117 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
137 | 136 | an32s 649 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑥‘𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧‘𝑘) − (𝑦‘𝑘))↑2)))) |
138 | 100, 116,
137 | 3brtr4d 5106 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
139 | 138 | ralrimiva 3103 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
140 | 64, 139 | jca 512 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
141 | 140 | ralrimivva 3123 |
. 2
⊢ (𝐼 ∈ 𝑉 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
142 | | ovex 7308 |
. . . 4
⊢ (ℝ
↑m 𝐼)
∈ V |
143 | 1, 142 | rabex2 5258 |
. . 3
⊢ 𝑋 ∈ V |
144 | | ismet 23476 |
. . 3
⊢ (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |
145 | 143, 144 | ax-mp 5 |
. 2
⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
146 | 31, 141, 145 | sylanbrc 583 |
1
⊢ (𝐼 ∈ 𝑉 → 𝐷 ∈ (Met‘𝑋)) |