MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqdifeq Structured version   Visualization version   GIF version

Theorem uneqdifeq 4468
Description: Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
uneqdifeq ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeq
StepHypRef Expression
1 uncom 4133 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2755 . . . . . . 7 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2741 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 4094 . . . . . . 7 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 4456 . . . . . . 7 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2755 . . . . . . . 8 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 4184 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2740 . . . . . . . . . 10 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 4429 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 275 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2755 . . . . . . . . . . 11 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 413 . . . . . . . . . 10 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2743 . . . . . . . . 9 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 217 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 31 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 586 . . . . . 6 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 17 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 690 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 32 . . 3 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 481 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
21 simpl 482 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐴𝐶)
22 difssd 4112 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐶)
23 sseq1 3984 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → ((𝐶𝐴) ⊆ 𝐶𝐵𝐶))
2422, 23mpbid 232 . . . . . . 7 ((𝐶𝐴) = 𝐵𝐵𝐶)
2524adantl 481 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐵𝐶)
2621, 25unssd 4167 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) ⊆ 𝐶)
27 eqimss 4017 . . . . . . 7 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐵)
28 ssundif 4463 . . . . . . 7 (𝐶 ⊆ (𝐴𝐵) ↔ (𝐶𝐴) ⊆ 𝐵)
2927, 28sylibr 234 . . . . . 6 ((𝐶𝐴) = 𝐵𝐶 ⊆ (𝐴𝐵))
3029adantl 481 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐶 ⊆ (𝐴𝐵))
3126, 30eqssd 3976 . . . 4 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) = 𝐶)
3231ex 412 . . 3 (𝐴𝐶 → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3332adantr 480 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3420, 33impbid 212 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309
This theorem is referenced by:  fzdifsuc  13601  hashbclem  14470  lecldbas  23157  conndisj  23354  ptuncnv  23745  ptunhmeo  23746  cldsubg  24049  icopnfcld  24706  iocmnfcld  24707  voliunlem1  25503  icombl  25517  ioombl  25518  uniioombllem4  25539  ismbf3d  25607  lhop  25973  symgcom  33094  f1resfz0f1d  35136  subfacp1lem3  35204  subfacp1lem5  35206  pconnconn  35253  cvmscld  35295
  Copyright terms: Public domain W3C validator