MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqdifeq Structured version   Visualization version   GIF version

Theorem uneqdifeq 4219
Description: Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
uneqdifeq ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeq
StepHypRef Expression
1 uncom 3921 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2784 . . . . . . 7 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2771 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 3885 . . . . . . 7 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 4210 . . . . . . 7 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2784 . . . . . . . 8 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 3969 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2770 . . . . . . . . . 10 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 4184 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 266 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2784 . . . . . . . . . . 11 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 402 . . . . . . . . . 10 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2773 . . . . . . . . 9 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 208 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 31 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 580 . . . . . 6 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 17 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 681 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 32 . . 3 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 473 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
21 simpl 474 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐴𝐶)
22 difssd 3902 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐶)
23 sseq1 3788 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → ((𝐶𝐴) ⊆ 𝐶𝐵𝐶))
2422, 23mpbid 223 . . . . . . 7 ((𝐶𝐴) = 𝐵𝐵𝐶)
2524adantl 473 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐵𝐶)
2621, 25unssd 3953 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) ⊆ 𝐶)
27 eqimss 3819 . . . . . . 7 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐵)
28 ssundif 4214 . . . . . . 7 (𝐶 ⊆ (𝐴𝐵) ↔ (𝐶𝐴) ⊆ 𝐵)
2927, 28sylibr 225 . . . . . 6 ((𝐶𝐴) = 𝐵𝐶 ⊆ (𝐴𝐵))
3029adantl 473 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐶 ⊆ (𝐴𝐵))
3126, 30eqssd 3780 . . . 4 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) = 𝐶)
3231ex 401 . . 3 (𝐴𝐶 → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3332adantr 472 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3420, 33impbid 203 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  cdif 3731  cun 3732  cin 3733  wss 3734  c0 4081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082
This theorem is referenced by:  fzdifsuc  12612  hashbclem  13442  lecldbas  21317  conndisj  21513  ptuncnv  21904  ptunhmeo  21905  cldsubg  22207  icopnfcld  22864  iocmnfcld  22865  voliunlem1  23622  icombl  23636  ioombl  23637  uniioombllem4  23658  ismbf3d  23726  lhop  24084  subfacp1lem3  31633  subfacp1lem5  31635  pconnconn  31682  cvmscld  31724
  Copyright terms: Public domain W3C validator