MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqdifeq Structured version   Visualization version   GIF version

Theorem uneqdifeq 4452
Description: Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
uneqdifeq ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeq
StepHypRef Expression
1 uncom 4117 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2749 . . . . . . 7 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2735 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 4078 . . . . . . 7 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 4440 . . . . . . 7 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2749 . . . . . . . 8 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 4168 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2734 . . . . . . . . . 10 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 4413 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 275 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2749 . . . . . . . . . . 11 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 413 . . . . . . . . . 10 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2737 . . . . . . . . 9 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 217 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 31 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 586 . . . . . 6 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 17 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 690 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 32 . . 3 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 481 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
21 simpl 482 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐴𝐶)
22 difssd 4096 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐶)
23 sseq1 3969 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → ((𝐶𝐴) ⊆ 𝐶𝐵𝐶))
2422, 23mpbid 232 . . . . . . 7 ((𝐶𝐴) = 𝐵𝐵𝐶)
2524adantl 481 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐵𝐶)
2621, 25unssd 4151 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) ⊆ 𝐶)
27 eqimss 4002 . . . . . . 7 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐵)
28 ssundif 4447 . . . . . . 7 (𝐶 ⊆ (𝐴𝐵) ↔ (𝐶𝐴) ⊆ 𝐵)
2927, 28sylibr 234 . . . . . 6 ((𝐶𝐴) = 𝐵𝐶 ⊆ (𝐴𝐵))
3029adantl 481 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐶 ⊆ (𝐴𝐵))
3126, 30eqssd 3961 . . . 4 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) = 𝐶)
3231ex 412 . . 3 (𝐴𝐶 → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3332adantr 480 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3420, 33impbid 212 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293
This theorem is referenced by:  fzdifsuc  13523  hashbclem  14395  lecldbas  23140  conndisj  23337  ptuncnv  23728  ptunhmeo  23729  cldsubg  24032  icopnfcld  24689  iocmnfcld  24690  voliunlem1  25485  icombl  25499  ioombl  25500  uniioombllem4  25521  ismbf3d  25589  lhop  25955  symgcom  33056  f1resfz0f1d  35095  subfacp1lem3  35163  subfacp1lem5  35165  pconnconn  35212  cvmscld  35254
  Copyright terms: Public domain W3C validator