MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpcndif0 Structured version   Visualization version   GIF version

Theorem rpcndif0 12932
Description: A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
rpcndif0 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))

Proof of Theorem rpcndif0
StepHypRef Expression
1 rpcnne0 12930 . 2 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
2 eldifsn 4740 . 2 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
31, 2sylibr 234 1 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  cdif 3902  {csn 4579  cc 11026  0cc0 11028  +crp 12911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-addrcl 11089  ax-rnegex 11099  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-rp 12912
This theorem is referenced by:  reefgim  26376  relogbreexp  26701  relogbmul  26703  relogbdiv  26705  relogbcxpb  26713  relogbf  26717  logbgt0b  26719  amgmlemALT  49789
  Copyright terms: Public domain W3C validator