| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpcndif0 | Structured version Visualization version GIF version | ||
| Description: A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020.) |
| Ref | Expression |
|---|---|
| rpcndif0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcnne0 13025 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
| 2 | eldifsn 4762 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 ℂcc 11125 0cc0 11127 ℝ+crp 13006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-addrcl 11188 ax-rnegex 11198 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-rp 13007 |
| This theorem is referenced by: reefgim 26410 relogbreexp 26735 relogbmul 26737 relogbdiv 26739 relogbcxpb 26747 relogbf 26751 logbgt0b 26753 amgmlemALT 49615 |
| Copyright terms: Public domain | W3C validator |