![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpcndif0 | Structured version Visualization version GIF version |
Description: A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020.) |
Ref | Expression |
---|---|
rpcndif0 | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcnne0 12262 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
2 | eldifsn 4630 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
3 | 1, 2 | sylibr 235 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ (ℂ ∖ {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2081 ≠ wne 2984 ∖ cdif 3860 {csn 4476 ℂcc 10386 0cc0 10388 ℝ+crp 12244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-resscn 10445 ax-1cn 10446 ax-addrcl 10449 ax-rnegex 10459 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-po 5367 df-so 5368 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-ltxr 10531 df-rp 12245 |
This theorem is referenced by: reefgim 24726 relogbreexp 25039 relogbmul 25041 relogbdiv 25043 relogbcxpb 25051 relogbf 25055 logbgt0b 25057 amgmlemALT 44411 |
Copyright terms: Public domain | W3C validator |