MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpcndif0 Structured version   Visualization version   GIF version

Theorem rpcndif0 12915
Description: A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
rpcndif0 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))

Proof of Theorem rpcndif0
StepHypRef Expression
1 rpcnne0 12913 . 2 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
2 eldifsn 4739 . 2 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
31, 2sylibr 234 1 (𝐴 ∈ ℝ+𝐴 ∈ (ℂ ∖ {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wne 2929  cdif 3895  {csn 4577  cc 11013  0cc0 11015  +crp 12894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-addrcl 11076  ax-rnegex 11086  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-ltxr 11160  df-rp 12895
This theorem is referenced by:  reefgim  26390  relogbreexp  26715  relogbmul  26717  relogbdiv  26719  relogbcxpb  26727  relogbf  26731  logbgt0b  26733  amgmlemALT  49931
  Copyright terms: Public domain W3C validator