| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raltp | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raltp.1 | ⊢ 𝐴 ∈ V |
| raltp.2 | ⊢ 𝐵 ∈ V |
| raltp.3 | ⊢ 𝐶 ∈ V |
| raltp.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| raltp.5 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| raltp.6 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| raltp | ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | raltp.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | raltp.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | raltp.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | raltp.5 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 6 | raltp.6 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
| 7 | 4, 5, 6 | raltpg 4652 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
| 8 | 1, 2, 3, 7 | mp3an 1463 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {ctp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 df-tp 4582 |
| This theorem is referenced by: fztpval 13493 2wlkdlem4 29927 2pthdlem1 29929 3wlkdlem5 30164 3wlkdlem10 30170 upgr3v3e3cycl 30181 poimirlem9 37742 cycl3grtrilem 48108 usgrexmpl2lem 48188 usgrexmpl2trifr 48199 gpg5nbgrvtx03star 48242 gpg5nbgr3star 48243 |
| Copyright terms: Public domain | W3C validator |