MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raltp Structured version   Visualization version   GIF version

Theorem raltp 4638
Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
raltp.1 𝐴 ∈ V
raltp.2 𝐵 ∈ V
raltp.3 𝐶 ∈ V
raltp.4 (𝑥 = 𝐴 → (𝜑𝜓))
raltp.5 (𝑥 = 𝐵 → (𝜑𝜒))
raltp.6 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
raltp (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem raltp
StepHypRef Expression
1 raltp.1 . 2 𝐴 ∈ V
2 raltp.2 . 2 𝐵 ∈ V
3 raltp.3 . 2 𝐶 ∈ V
4 raltp.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
5 raltp.5 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
6 raltp.6 . . 3 (𝑥 = 𝐶 → (𝜑𝜃))
74, 5, 6raltpg 4631 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
81, 2, 3, 7mp3an 1459 1 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  {ctp 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-tp 4563
This theorem is referenced by:  fztpval  13247  2wlkdlem4  28194  2pthdlem1  28196  3wlkdlem5  28428  3wlkdlem10  28434  upgr3v3e3cycl  28445  poimirlem9  35713
  Copyright terms: Public domain W3C validator