| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raltp | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raltp.1 | ⊢ 𝐴 ∈ V |
| raltp.2 | ⊢ 𝐵 ∈ V |
| raltp.3 | ⊢ 𝐶 ∈ V |
| raltp.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| raltp.5 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| raltp.6 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| raltp | ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | raltp.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | raltp.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | raltp.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | raltp.5 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 6 | raltp.6 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
| 7 | 4, 5, 6 | raltpg 4665 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
| 8 | 1, 2, 3, 7 | mp3an 1463 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: fztpval 13554 2wlkdlem4 29865 2pthdlem1 29867 3wlkdlem5 30099 3wlkdlem10 30105 upgr3v3e3cycl 30116 poimirlem9 37630 cycl3grtrilem 47949 usgrexmpl2lem 48021 usgrexmpl2trifr 48032 gpg5nbgrvtx03star 48075 gpg5nbgr3star 48076 |
| Copyright terms: Public domain | W3C validator |