![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raltp | Structured version Visualization version GIF version |
Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raltp.1 | ⊢ 𝐴 ∈ V |
raltp.2 | ⊢ 𝐵 ∈ V |
raltp.3 | ⊢ 𝐶 ∈ V |
raltp.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
raltp.5 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
raltp.6 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
Ref | Expression |
---|---|
raltp | ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raltp.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | raltp.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | raltp.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | raltp.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | raltp.5 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
6 | raltp.6 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
7 | 4, 5, 6 | raltpg 4702 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
8 | 1, 2, 3, 7 | mp3an 1461 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 {ctp 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-un 3953 df-sn 4629 df-pr 4631 df-tp 4633 |
This theorem is referenced by: fztpval 13562 2wlkdlem4 29179 2pthdlem1 29181 3wlkdlem5 29413 3wlkdlem10 29419 upgr3v3e3cycl 29430 poimirlem9 36492 |
Copyright terms: Public domain | W3C validator |