Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2wlkdlem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for 2wlkd 28433. (Contributed by AV, 14-Feb-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Ref | Expression |
---|---|
2wlkdlem4 | ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
2 | 2wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
3 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
4 | 2, 3, 1 | 2wlkdlem3 28424 | . . . 4 ⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
5 | simp1 1135 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴) | |
6 | 5 | eleq1d 2821 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
7 | simp2 1136 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵) | |
8 | 7 | eleq1d 2821 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) |
9 | simp3 1137 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶) | |
10 | 9 | eleq1d 2821 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
11 | 6, 8, 10 | 3anbi123d 1435 | . . . . 5 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
12 | 11 | bicomd 222 | . . . 4 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
13 | 4, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
14 | 1, 13 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
15 | 3 | fveq2i 6814 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
16 | s2len 14678 | . . . . . . 7 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
17 | 15, 16 | eqtri 2764 | . . . . . 6 ⊢ (♯‘𝐹) = 2 |
18 | 17 | oveq2i 7327 | . . . . 5 ⊢ (0...(♯‘𝐹)) = (0...2) |
19 | fz0tp 13436 | . . . . 5 ⊢ (0...2) = {0, 1, 2} | |
20 | 18, 19 | eqtri 2764 | . . . 4 ⊢ (0...(♯‘𝐹)) = {0, 1, 2} |
21 | 20 | raleqi 3307 | . . 3 ⊢ (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃‘𝑘) ∈ 𝑉) |
22 | c0ex 11048 | . . . 4 ⊢ 0 ∈ V | |
23 | 1ex 11050 | . . . 4 ⊢ 1 ∈ V | |
24 | 2ex 12129 | . . . 4 ⊢ 2 ∈ V | |
25 | fveq2 6811 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
26 | 25 | eleq1d 2821 | . . . 4 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉)) |
27 | fveq2 6811 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
28 | 27 | eleq1d 2821 | . . . 4 ⊢ (𝑘 = 1 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉)) |
29 | fveq2 6811 | . . . . 5 ⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) | |
30 | 29 | eleq1d 2821 | . . . 4 ⊢ (𝑘 = 2 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉)) |
31 | 22, 23, 24, 26, 28, 30 | raltp 4650 | . . 3 ⊢ (∀𝑘 ∈ {0, 1, 2} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
32 | 21, 31 | bitri 274 | . 2 ⊢ (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
33 | 14, 32 | sylibr 233 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {ctp 4574 ‘cfv 6465 (class class class)co 7316 0cc0 10950 1c1 10951 2c2 12107 ...cfz 13318 ♯chash 14123 〈“cs2 14630 〈“cs3 14631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-hash 14124 df-word 14296 df-concat 14352 df-s1 14378 df-s2 14637 df-s3 14638 |
This theorem is referenced by: 2wlkd 28433 |
Copyright terms: Public domain | W3C validator |