| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkdlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for 2wlkd 29903. (Contributed by AV, 14-Feb-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Ref | Expression |
|---|---|
| 2wlkdlem4 | ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 2 | 2wlkd.p | . . . . 5 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 3 | 2wlkd.f | . . . . 5 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 4 | 2, 3, 1 | 2wlkdlem3 29894 | . . . 4 ⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
| 5 | simp1 1136 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴) | |
| 6 | 5 | eleq1d 2818 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
| 7 | simp2 1137 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵) | |
| 8 | 7 | eleq1d 2818 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ∈ 𝑉 ↔ 𝐵 ∈ 𝑉)) |
| 9 | simp3 1138 | . . . . . . 7 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶) | |
| 10 | 9 | eleq1d 2818 | . . . . . 6 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
| 11 | 6, 8, 10 | 3anbi123d 1437 | . . . . 5 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ↔ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉))) |
| 12 | 11 | bicomd 223 | . . . 4 ⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 13 | 4, 12 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 14 | 1, 13 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
| 15 | 3 | fveq2i 6890 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘〈“𝐽𝐾”〉) |
| 16 | s2len 14911 | . . . . . . 7 ⊢ (♯‘〈“𝐽𝐾”〉) = 2 | |
| 17 | 15, 16 | eqtri 2757 | . . . . . 6 ⊢ (♯‘𝐹) = 2 |
| 18 | 17 | oveq2i 7425 | . . . . 5 ⊢ (0...(♯‘𝐹)) = (0...2) |
| 19 | fz0tp 13651 | . . . . 5 ⊢ (0...2) = {0, 1, 2} | |
| 20 | 18, 19 | eqtri 2757 | . . . 4 ⊢ (0...(♯‘𝐹)) = {0, 1, 2} |
| 21 | 20 | raleqi 3308 | . . 3 ⊢ (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃‘𝑘) ∈ 𝑉) |
| 22 | c0ex 11238 | . . . 4 ⊢ 0 ∈ V | |
| 23 | 1ex 11240 | . . . 4 ⊢ 1 ∈ V | |
| 24 | 2ex 12326 | . . . 4 ⊢ 2 ∈ V | |
| 25 | fveq2 6887 | . . . . 5 ⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) | |
| 26 | 25 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 0 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉)) |
| 27 | fveq2 6887 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) | |
| 28 | 27 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 1 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉)) |
| 29 | fveq2 6887 | . . . . 5 ⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) | |
| 30 | 29 | eleq1d 2818 | . . . 4 ⊢ (𝑘 = 2 → ((𝑃‘𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉)) |
| 31 | 22, 23, 24, 26, 28, 30 | raltp 4687 | . . 3 ⊢ (∀𝑘 ∈ {0, 1, 2} (𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
| 32 | 21, 31 | bitri 275 | . 2 ⊢ (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
| 33 | 14, 32 | sylibr 234 | 1 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {ctp 4612 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 2c2 12304 ...cfz 13530 ♯chash 14352 〈“cs2 14863 〈“cs3 14864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-s3 14871 |
| This theorem is referenced by: 2wlkd 29903 |
| Copyright terms: Public domain | W3C validator |