MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem4 Structured version   Visualization version   GIF version

Theorem 2wlkdlem4 29908
Description: Lemma 4 for 2wlkd 29916. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
Assertion
Ref Expression
2wlkdlem4 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐽(𝑘)   𝐾(𝑘)

Proof of Theorem 2wlkdlem4
StepHypRef Expression
1 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
42, 3, 12wlkdlem3 29907 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
5 simp1 1136 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) = 𝐴)
65eleq1d 2818 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘0) ∈ 𝑉𝐴𝑉))
7 simp2 1137 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
87eleq1d 2818 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘1) ∈ 𝑉𝐵𝑉))
9 simp3 1138 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
109eleq1d 2818 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ∈ 𝑉𝐶𝑉))
116, 8, 103anbi123d 1438 . . . . 5 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ↔ (𝐴𝑉𝐵𝑉𝐶𝑉)))
1211bicomd 223 . . . 4 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
134, 12syl 17 . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
141, 13mpbid 232 . 2 (𝜑 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
153fveq2i 6831 . . . . . . 7 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
16 s2len 14798 . . . . . . 7 (♯‘⟨“𝐽𝐾”⟩) = 2
1715, 16eqtri 2756 . . . . . 6 (♯‘𝐹) = 2
1817oveq2i 7363 . . . . 5 (0...(♯‘𝐹)) = (0...2)
19 fz0tp 13530 . . . . 5 (0...2) = {0, 1, 2}
2018, 19eqtri 2756 . . . 4 (0...(♯‘𝐹)) = {0, 1, 2}
2120raleqi 3291 . . 3 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ∈ 𝑉)
22 c0ex 11113 . . . 4 0 ∈ V
23 1ex 11115 . . . 4 1 ∈ V
24 2ex 12209 . . . 4 2 ∈ V
25 fveq2 6828 . . . . 5 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2625eleq1d 2818 . . . 4 (𝑘 = 0 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘0) ∈ 𝑉))
27 fveq2 6828 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
2827eleq1d 2818 . . . 4 (𝑘 = 1 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘1) ∈ 𝑉))
29 fveq2 6828 . . . . 5 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
3029eleq1d 2818 . . . 4 (𝑘 = 2 → ((𝑃𝑘) ∈ 𝑉 ↔ (𝑃‘2) ∈ 𝑉))
3122, 23, 24, 26, 28, 30raltp 4657 . . 3 (∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3221, 31bitri 275 . 2 (∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉 ↔ ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
3314, 32sylibr 234 1 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {ctp 4579  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  2c2 12187  ...cfz 13409  chash 14239  ⟨“cs2 14750  ⟨“cs3 14751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758
This theorem is referenced by:  2wlkd  29916
  Copyright terms: Public domain W3C validator