MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reurexprg Structured version   Visualization version   GIF version

Theorem reurexprg 4640
Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023.)
Hypotheses
Ref Expression
reuprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
reuprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
reurexprg ((𝐴𝑉𝐵𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒𝜓) → 𝐴 = 𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem reurexprg
StepHypRef Expression
1 reuprg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
2 reuprg.2 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2reuprg 4639 . 2 ((𝐴𝑉𝐵𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓𝜒) ∧ ((𝜒𝜓) → 𝐴 = 𝐵))))
41, 2rexprg 4632 . . . 4 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
54bicomd 222 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝜓𝜒) ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝜑))
65anbi1d 630 . 2 ((𝐴𝑉𝐵𝑊) → (((𝜓𝜒) ∧ ((𝜒𝜓) → 𝐴 = 𝐵)) ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒𝜓) → 𝐴 = 𝐵))))
73, 6bitrd 278 1 ((𝐴𝑉𝐵𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒𝜓) → 𝐴 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wrex 3065  ∃!wreu 3066  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-v 3434  df-sbc 3717  df-un 3892  df-sn 4562  df-pr 4564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator