| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reurexprg | Structured version Visualization version GIF version | ||
| Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023.) |
| Ref | Expression |
|---|---|
| reuprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| reuprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reurexprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuprg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | reuprg.2 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | reuprg 4669 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
| 4 | 1, 2 | rexprg 4663 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
| 5 | 4 | bicomd 223 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝜓 ∨ 𝜒) ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝜑)) |
| 6 | 5 | anbi1d 631 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)) ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
| 7 | 3, 6 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∃!wreu 3354 {cpr 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-v 3452 df-sbc 3756 df-un 3921 df-sn 4592 df-pr 4594 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |