Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reurexprg | Structured version Visualization version GIF version |
Description: Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
reuprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
reuprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
reurexprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuprg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | reuprg.2 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | reuprg 4639 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
4 | 1, 2 | rexprg 4632 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∨ 𝜒))) |
5 | 4 | bicomd 222 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝜓 ∨ 𝜒) ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝜑)) |
6 | 5 | anbi1d 630 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (((𝜓 ∨ 𝜒) ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)) ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
7 | 3, 6 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒 ∧ 𝜓) → 𝐴 = 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∃!wreu 3066 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-v 3434 df-sbc 3717 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |