MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem10 Structured version   Visualization version   GIF version

Theorem 3wlkdlem10 28533
Description: Lemma 10 for 3wlkd 28534. (Contributed by Alexander van der Vekens, 12-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
Assertion
Ref Expression
3wlkdlem10 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem10
StepHypRef Expression
1 3wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . . 4 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
4 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
5 3wlkd.e . . . 4 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
61, 2, 3, 4, 53wlkdlem9 28532 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))
71, 2, 33wlkdlem3 28525 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
8 preq12 4671 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
98adantr 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘0), (𝑃‘1)} = {𝐴, 𝐵})
109sseq1d 3952 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ↔ {𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0))))
11 simplr 766 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
12 simprl 768 . . . . . . 7 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
1311, 12preq12d 4677 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘1), (𝑃‘2)} = {𝐵, 𝐶})
1413sseq1d 3952 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1))))
15 preq12 4671 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1615adantl 482 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → {(𝑃‘2), (𝑃‘3)} = {𝐶, 𝐷})
1716sseq1d 3952 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ({(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2)) ↔ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2))))
1810, 14, 173anbi123d 1435 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))))
197, 18syl 17 . . 3 (𝜑 → (({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))) ↔ ({𝐴, 𝐵} ⊆ (𝐼‘(𝐹‘0)) ∧ {𝐵, 𝐶} ⊆ (𝐼‘(𝐹‘1)) ∧ {𝐶, 𝐷} ⊆ (𝐼‘(𝐹‘2)))))
206, 19mpbird 256 . 2 (𝜑 → ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
211, 23wlkdlem2 28524 . . . 4 (0..^(♯‘𝐹)) = {0, 1, 2}
2221raleqi 3346 . . 3 (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
23 c0ex 10969 . . . 4 0 ∈ V
24 1ex 10971 . . . 4 1 ∈ V
25 2ex 12050 . . . 4 2 ∈ V
26 fveq2 6774 . . . . . 6 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
27 fv0p1e1 12096 . . . . . 6 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
2826, 27preq12d 4677 . . . . 5 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
29 2fveq3 6779 . . . . 5 (𝑘 = 0 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘0)))
3028, 29sseq12d 3954 . . . 4 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0))))
31 fveq2 6774 . . . . . 6 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
32 oveq1 7282 . . . . . . . 8 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
33 1p1e2 12098 . . . . . . . 8 (1 + 1) = 2
3432, 33eqtrdi 2794 . . . . . . 7 (𝑘 = 1 → (𝑘 + 1) = 2)
3534fveq2d 6778 . . . . . 6 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
3631, 35preq12d 4677 . . . . 5 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
37 2fveq3 6779 . . . . 5 (𝑘 = 1 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘1)))
3836, 37sseq12d 3954 . . . 4 (𝑘 = 1 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1))))
39 fveq2 6774 . . . . . 6 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
40 oveq1 7282 . . . . . . . 8 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
41 2p1e3 12115 . . . . . . . 8 (2 + 1) = 3
4240, 41eqtrdi 2794 . . . . . . 7 (𝑘 = 2 → (𝑘 + 1) = 3)
4342fveq2d 6778 . . . . . 6 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
4439, 43preq12d 4677 . . . . 5 (𝑘 = 2 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)})
45 2fveq3 6779 . . . . 5 (𝑘 = 2 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹‘2)))
4644, 45sseq12d 3954 . . . 4 (𝑘 = 2 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
4723, 24, 25, 30, 38, 46raltp 4641 . . 3 (∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
4822, 47bitri 274 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ↔ ({(𝑃‘0), (𝑃‘1)} ⊆ (𝐼‘(𝐹‘0)) ∧ {(𝑃‘1), (𝑃‘2)} ⊆ (𝐼‘(𝐹‘1)) ∧ {(𝑃‘2), (𝑃‘3)} ⊆ (𝐼‘(𝐹‘2))))
4920, 48sylibr 233 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  {cpr 4563  {ctp 4565  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  2c2 12028  3c3 12029  ..^cfzo 13382  chash 14044  ⟨“cs3 14555  ⟨“cs4 14556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-s4 14563
This theorem is referenced by:  3wlkd  28534
  Copyright terms: Public domain W3C validator