MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthdlem1 Structured version   Visualization version   GIF version

Theorem 2pthdlem1 29451
Description: Lemma 1 for 2pthd 29461. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
2pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑉(𝑗)

Proof of Theorem 2pthdlem1
StepHypRef Expression
1 2wlkd.n . . . 4 (𝜑 → (𝐴𝐵𝐵𝐶))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
4 2wlkd.s . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
52, 3, 42wlkdlem3 29448 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
6 simpl 481 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
7 simpr 483 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
86, 7neeq12d 3000 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
98bicomd 222 . . . . . . . . . 10 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1093adant3 1130 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1110biimpcd 248 . . . . . . . 8 (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1211adantr 479 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1312imp 405 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 eqid 2730 . . . . . 6 1 = 1
16 eqneqall 2949 . . . . . 6 (1 = 1 → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
1715, 16mp1i 13 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
18 simpr 483 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
19 simpl 481 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
2018, 19neeq12d 3000 . . . . . . . . . . 11 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ≠ (𝑃‘1) ↔ 𝐶𝐵))
21 necom 2992 . . . . . . . . . . 11 (𝐶𝐵𝐵𝐶)
2220, 21bitr2di 287 . . . . . . . . . 10 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
23223adant1 1128 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
2423biimpcd 248 . . . . . . . 8 (𝐵𝐶 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2524adantl 480 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2625imp 405 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘2) ≠ (𝑃‘1))
2726a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
2814, 17, 273jca 1126 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
291, 5, 28syl2anc 582 . . 3 (𝜑 → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
302fveq2i 6893 . . . . . . . 8 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶”⟩)
31 s3len 14849 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3230, 31eqtri 2758 . . . . . . 7 (♯‘𝑃) = 3
3332oveq2i 7422 . . . . . 6 (0..^(♯‘𝑃)) = (0..^3)
34 fzo0to3tp 13722 . . . . . 6 (0..^3) = {0, 1, 2}
3533, 34eqtri 2758 . . . . 5 (0..^(♯‘𝑃)) = {0, 1, 2}
3635raleqi 3321 . . . 4 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
37 c0ex 11212 . . . . 5 0 ∈ V
38 1ex 11214 . . . . 5 1 ∈ V
39 2ex 12293 . . . . 5 2 ∈ V
40 neeq1 3001 . . . . . 6 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
41 fveq2 6890 . . . . . . 7 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4241neeq1d 2998 . . . . . 6 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
4340, 42imbi12d 343 . . . . 5 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
44 neeq1 3001 . . . . . 6 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
45 fveq2 6890 . . . . . . 7 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
4645neeq1d 2998 . . . . . 6 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
4744, 46imbi12d 343 . . . . 5 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
48 neeq1 3001 . . . . . 6 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
49 fveq2 6890 . . . . . . 7 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
5049neeq1d 2998 . . . . . 6 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
5148, 50imbi12d 343 . . . . 5 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5237, 38, 39, 43, 47, 51raltp 4708 . . . 4 (∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5336, 52bitri 274 . . 3 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5429, 53sylibr 233 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
553fveq2i 6893 . . . . . . . 8 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
56 s2len 14844 . . . . . . . 8 (♯‘⟨“𝐽𝐾”⟩) = 2
5755, 56eqtri 2758 . . . . . . 7 (♯‘𝐹) = 2
5857oveq2i 7422 . . . . . 6 (1..^(♯‘𝐹)) = (1..^2)
59 fzo12sn 13719 . . . . . 6 (1..^2) = {1}
6058, 59eqtri 2758 . . . . 5 (1..^(♯‘𝐹)) = {1}
6160raleqi 3321 . . . 4 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
62 neeq2 3002 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
63 fveq2 6890 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
6463neeq2d 2999 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
6562, 64imbi12d 343 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
6638, 65ralsn 4684 . . . 4 (∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6761, 66bitri 274 . . 3 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6867ralbii 3091 . 2 (∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6954, 68sylibr 233 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wral 3059  {csn 4627  {ctp 4631  cfv 6542  (class class class)co 7411  0cc0 11112  1c1 11113  2c2 12271  3c3 12272  ..^cfzo 13631  chash 14294  ⟨“cs2 14796  ⟨“cs3 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-s2 14803  df-s3 14804
This theorem is referenced by:  2pthd  29461
  Copyright terms: Public domain W3C validator