Proof of Theorem 2pthdlem1
Step | Hyp | Ref
| Expression |
1 | | 2wlkd.n |
. . . 4
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2 | | 2wlkd.p |
. . . . 5
⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
3 | | 2wlkd.f |
. . . . 5
⊢ 𝐹 = 〈“𝐽𝐾”〉 |
4 | | 2wlkd.s |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
5 | 2, 3, 4 | 2wlkdlem3 27812 |
. . . 4
⊢ (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) |
6 | | simpl 486 |
. . . . . . . . . . . 12
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴) |
7 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵) |
8 | 6, 7 | neeq12d 3012 |
. . . . . . . . . . 11
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴 ≠ 𝐵)) |
9 | 8 | bicomd 226 |
. . . . . . . . . 10
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝐴 ≠ 𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1))) |
10 | 9 | 3adant3 1129 |
. . . . . . . . 9
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐴 ≠ 𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1))) |
11 | 10 | biimpcd 252 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1))) |
12 | 11 | adantr 484 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1))) |
13 | 12 | imp 410 |
. . . . . 6
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘0) ≠ (𝑃‘1)) |
14 | 13 | a1d 25 |
. . . . 5
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))) |
15 | | eqid 2758 |
. . . . . 6
⊢ 1 =
1 |
16 | | eqneqall 2962 |
. . . . . 6
⊢ (1 = 1
→ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))) |
17 | 15, 16 | mp1i 13 |
. . . . 5
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))) |
18 | | simpr 488 |
. . . . . . . . . . . 12
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶) |
19 | | simpl 486 |
. . . . . . . . . . . 12
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵) |
20 | 18, 19 | neeq12d 3012 |
. . . . . . . . . . 11
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ≠ (𝑃‘1) ↔ 𝐶 ≠ 𝐵)) |
21 | | necom 3004 |
. . . . . . . . . . 11
⊢ (𝐶 ≠ 𝐵 ↔ 𝐵 ≠ 𝐶) |
22 | 20, 21 | bitr2di 291 |
. . . . . . . . . 10
⊢ (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵 ≠ 𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1))) |
23 | 22 | 3adant1 1127 |
. . . . . . . . 9
⊢ (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵 ≠ 𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1))) |
24 | 23 | biimpcd 252 |
. . . . . . . 8
⊢ (𝐵 ≠ 𝐶 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1))) |
25 | 24 | adantl 485 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1))) |
26 | 25 | imp 410 |
. . . . . 6
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘2) ≠ (𝑃‘1)) |
27 | 26 | a1d 25 |
. . . . 5
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))) |
28 | 14, 17, 27 | 3jca 1125 |
. . . 4
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1
→ (𝑃‘1) ≠
(𝑃‘1)) ∧ (2 ≠
1 → (𝑃‘2) ≠
(𝑃‘1)))) |
29 | 1, 5, 28 | syl2anc 587 |
. . 3
⊢ (𝜑 → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1
→ (𝑃‘1) ≠
(𝑃‘1)) ∧ (2 ≠
1 → (𝑃‘2) ≠
(𝑃‘1)))) |
30 | 2 | fveq2i 6661 |
. . . . . . . 8
⊢
(♯‘𝑃) =
(♯‘〈“𝐴𝐵𝐶”〉) |
31 | | s3len 14303 |
. . . . . . . 8
⊢
(♯‘〈“𝐴𝐵𝐶”〉) = 3 |
32 | 30, 31 | eqtri 2781 |
. . . . . . 7
⊢
(♯‘𝑃) =
3 |
33 | 32 | oveq2i 7161 |
. . . . . 6
⊢
(0..^(♯‘𝑃)) = (0..^3) |
34 | | fzo0to3tp 13172 |
. . . . . 6
⊢ (0..^3) =
{0, 1, 2} |
35 | 33, 34 | eqtri 2781 |
. . . . 5
⊢
(0..^(♯‘𝑃)) = {0, 1, 2} |
36 | 35 | raleqi 3327 |
. . . 4
⊢
(∀𝑘 ∈
(0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1))) |
37 | | c0ex 10673 |
. . . . 5
⊢ 0 ∈
V |
38 | | 1ex 10675 |
. . . . 5
⊢ 1 ∈
V |
39 | | 2ex 11751 |
. . . . 5
⊢ 2 ∈
V |
40 | | neeq1 3013 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1)) |
41 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
42 | 41 | neeq1d 3010 |
. . . . . 6
⊢ (𝑘 = 0 → ((𝑃‘𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1))) |
43 | 40, 42 | imbi12d 348 |
. . . . 5
⊢ (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))) |
44 | | neeq1 3013 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1)) |
45 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
46 | 45 | neeq1d 3010 |
. . . . . 6
⊢ (𝑘 = 1 → ((𝑃‘𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1))) |
47 | 44, 46 | imbi12d 348 |
. . . . 5
⊢ (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))) |
48 | | neeq1 3013 |
. . . . . 6
⊢ (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1)) |
49 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
50 | 49 | neeq1d 3010 |
. . . . . 6
⊢ (𝑘 = 2 → ((𝑃‘𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1))) |
51 | 48, 50 | imbi12d 348 |
. . . . 5
⊢ (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))) |
52 | 37, 38, 39, 43, 47, 51 | raltp 4598 |
. . . 4
⊢
(∀𝑘 ∈
{0, 1, 2} (𝑘 ≠ 1 →
(𝑃‘𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1
→ (𝑃‘1) ≠
(𝑃‘1)) ∧ (2 ≠
1 → (𝑃‘2) ≠
(𝑃‘1)))) |
53 | 36, 52 | bitri 278 |
. . 3
⊢
(∀𝑘 ∈
(0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1
→ (𝑃‘1) ≠
(𝑃‘1)) ∧ (2 ≠
1 → (𝑃‘2) ≠
(𝑃‘1)))) |
54 | 29, 53 | sylibr 237 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1))) |
55 | 3 | fveq2i 6661 |
. . . . . . . 8
⊢
(♯‘𝐹) =
(♯‘〈“𝐽𝐾”〉) |
56 | | s2len 14298 |
. . . . . . . 8
⊢
(♯‘〈“𝐽𝐾”〉) = 2 |
57 | 55, 56 | eqtri 2781 |
. . . . . . 7
⊢
(♯‘𝐹) =
2 |
58 | 57 | oveq2i 7161 |
. . . . . 6
⊢
(1..^(♯‘𝐹)) = (1..^2) |
59 | | fzo12sn 13169 |
. . . . . 6
⊢ (1..^2) =
{1} |
60 | 58, 59 | eqtri 2781 |
. . . . 5
⊢
(1..^(♯‘𝐹)) = {1} |
61 | 60 | raleqi 3327 |
. . . 4
⊢
(∀𝑗 ∈
(1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗)) ↔ ∀𝑗 ∈ {1} (𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) |
62 | | neeq2 3014 |
. . . . . 6
⊢ (𝑗 = 1 → (𝑘 ≠ 𝑗 ↔ 𝑘 ≠ 1)) |
63 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑗 = 1 → (𝑃‘𝑗) = (𝑃‘1)) |
64 | 63 | neeq2d 3011 |
. . . . . 6
⊢ (𝑗 = 1 → ((𝑃‘𝑘) ≠ (𝑃‘𝑗) ↔ (𝑃‘𝑘) ≠ (𝑃‘1))) |
65 | 62, 64 | imbi12d 348 |
. . . . 5
⊢ (𝑗 = 1 → ((𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗)) ↔ (𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1)))) |
66 | 38, 65 | ralsn 4576 |
. . . 4
⊢
(∀𝑗 ∈
{1} (𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗)) ↔ (𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1))) |
67 | 61, 66 | bitri 278 |
. . 3
⊢
(∀𝑗 ∈
(1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗)) ↔ (𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1))) |
68 | 67 | ralbii 3097 |
. 2
⊢
(∀𝑘 ∈
(0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃‘𝑘) ≠ (𝑃‘1))) |
69 | 54, 68 | sylibr 237 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘 ≠ 𝑗 → (𝑃‘𝑘) ≠ (𝑃‘𝑗))) |