MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthdlem1 Structured version   Visualization version   GIF version

Theorem 2pthdlem1 29860
Description: Lemma 1 for 2pthd 29870. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
2pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑉(𝑗)

Proof of Theorem 2pthdlem1
StepHypRef Expression
1 2wlkd.n . . . 4 (𝜑 → (𝐴𝐵𝐵𝐶))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
4 2wlkd.s . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
52, 3, 42wlkdlem3 29857 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
6 simpl 482 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
7 simpr 484 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
86, 7neeq12d 2986 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
98bicomd 223 . . . . . . . . . 10 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1093adant3 1132 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1110biimpcd 249 . . . . . . . 8 (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1211adantr 480 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1312imp 406 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 eqid 2729 . . . . . 6 1 = 1
16 eqneqall 2936 . . . . . 6 (1 = 1 → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
1715, 16mp1i 13 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
18 simpr 484 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
19 simpl 482 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
2018, 19neeq12d 2986 . . . . . . . . . . 11 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ≠ (𝑃‘1) ↔ 𝐶𝐵))
21 necom 2978 . . . . . . . . . . 11 (𝐶𝐵𝐵𝐶)
2220, 21bitr2di 288 . . . . . . . . . 10 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
23223adant1 1130 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
2423biimpcd 249 . . . . . . . 8 (𝐵𝐶 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2524adantl 481 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2625imp 406 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘2) ≠ (𝑃‘1))
2726a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
2814, 17, 273jca 1128 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
291, 5, 28syl2anc 584 . . 3 (𝜑 → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
302fveq2i 6861 . . . . . . . 8 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶”⟩)
31 s3len 14860 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3230, 31eqtri 2752 . . . . . . 7 (♯‘𝑃) = 3
3332oveq2i 7398 . . . . . 6 (0..^(♯‘𝑃)) = (0..^3)
34 fzo0to3tp 13713 . . . . . 6 (0..^3) = {0, 1, 2}
3533, 34eqtri 2752 . . . . 5 (0..^(♯‘𝑃)) = {0, 1, 2}
3635raleqi 3297 . . . 4 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
37 c0ex 11168 . . . . 5 0 ∈ V
38 1ex 11170 . . . . 5 1 ∈ V
39 2ex 12263 . . . . 5 2 ∈ V
40 neeq1 2987 . . . . . 6 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
41 fveq2 6858 . . . . . . 7 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4241neeq1d 2984 . . . . . 6 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
4340, 42imbi12d 344 . . . . 5 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
44 neeq1 2987 . . . . . 6 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
45 fveq2 6858 . . . . . . 7 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
4645neeq1d 2984 . . . . . 6 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
4744, 46imbi12d 344 . . . . 5 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
48 neeq1 2987 . . . . . 6 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
49 fveq2 6858 . . . . . . 7 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
5049neeq1d 2984 . . . . . 6 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
5148, 50imbi12d 344 . . . . 5 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5237, 38, 39, 43, 47, 51raltp 4669 . . . 4 (∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5336, 52bitri 275 . . 3 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5429, 53sylibr 234 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
553fveq2i 6861 . . . . . . . 8 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
56 s2len 14855 . . . . . . . 8 (♯‘⟨“𝐽𝐾”⟩) = 2
5755, 56eqtri 2752 . . . . . . 7 (♯‘𝐹) = 2
5857oveq2i 7398 . . . . . 6 (1..^(♯‘𝐹)) = (1..^2)
59 fzo12sn 13709 . . . . . 6 (1..^2) = {1}
6058, 59eqtri 2752 . . . . 5 (1..^(♯‘𝐹)) = {1}
6160raleqi 3297 . . . 4 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
62 neeq2 2988 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
63 fveq2 6858 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
6463neeq2d 2985 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
6562, 64imbi12d 344 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
6638, 65ralsn 4645 . . . 4 (∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6761, 66bitri 275 . . 3 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6867ralbii 3075 . 2 (∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6954, 68sylibr 234 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {csn 4589  {ctp 4593  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  ..^cfzo 13615  chash 14295  ⟨“cs2 14807  ⟨“cs3 14808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815
This theorem is referenced by:  2pthd  29870
  Copyright terms: Public domain W3C validator