MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthdlem1 Structured version   Visualization version   GIF version

Theorem 2pthdlem1 29875
Description: Lemma 1 for 2pthd 29885. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
2pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑉(𝑗)

Proof of Theorem 2pthdlem1
StepHypRef Expression
1 2wlkd.n . . . 4 (𝜑 → (𝐴𝐵𝐵𝐶))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
4 2wlkd.s . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
52, 3, 42wlkdlem3 29872 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
6 simpl 482 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
7 simpr 484 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
86, 7neeq12d 2986 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
98bicomd 223 . . . . . . . . . 10 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1093adant3 1132 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1110biimpcd 249 . . . . . . . 8 (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1211adantr 480 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1312imp 406 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 eqid 2729 . . . . . 6 1 = 1
16 eqneqall 2936 . . . . . 6 (1 = 1 → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
1715, 16mp1i 13 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
18 simpr 484 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
19 simpl 482 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
2018, 19neeq12d 2986 . . . . . . . . . . 11 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ≠ (𝑃‘1) ↔ 𝐶𝐵))
21 necom 2978 . . . . . . . . . . 11 (𝐶𝐵𝐵𝐶)
2220, 21bitr2di 288 . . . . . . . . . 10 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
23223adant1 1130 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
2423biimpcd 249 . . . . . . . 8 (𝐵𝐶 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2524adantl 481 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2625imp 406 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘2) ≠ (𝑃‘1))
2726a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
2814, 17, 273jca 1128 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
291, 5, 28syl2anc 584 . . 3 (𝜑 → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
302fveq2i 6825 . . . . . . . 8 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶”⟩)
31 s3len 14801 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3230, 31eqtri 2752 . . . . . . 7 (♯‘𝑃) = 3
3332oveq2i 7360 . . . . . 6 (0..^(♯‘𝑃)) = (0..^3)
34 fzo0to3tp 13655 . . . . . 6 (0..^3) = {0, 1, 2}
3533, 34eqtri 2752 . . . . 5 (0..^(♯‘𝑃)) = {0, 1, 2}
3635raleqi 3287 . . . 4 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
37 c0ex 11109 . . . . 5 0 ∈ V
38 1ex 11111 . . . . 5 1 ∈ V
39 2ex 12205 . . . . 5 2 ∈ V
40 neeq1 2987 . . . . . 6 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
41 fveq2 6822 . . . . . . 7 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4241neeq1d 2984 . . . . . 6 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
4340, 42imbi12d 344 . . . . 5 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
44 neeq1 2987 . . . . . 6 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
45 fveq2 6822 . . . . . . 7 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
4645neeq1d 2984 . . . . . 6 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
4744, 46imbi12d 344 . . . . 5 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
48 neeq1 2987 . . . . . 6 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
49 fveq2 6822 . . . . . . 7 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
5049neeq1d 2984 . . . . . 6 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
5148, 50imbi12d 344 . . . . 5 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5237, 38, 39, 43, 47, 51raltp 4657 . . . 4 (∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5336, 52bitri 275 . . 3 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5429, 53sylibr 234 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
553fveq2i 6825 . . . . . . . 8 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
56 s2len 14796 . . . . . . . 8 (♯‘⟨“𝐽𝐾”⟩) = 2
5755, 56eqtri 2752 . . . . . . 7 (♯‘𝐹) = 2
5857oveq2i 7360 . . . . . 6 (1..^(♯‘𝐹)) = (1..^2)
59 fzo12sn 13651 . . . . . 6 (1..^2) = {1}
6058, 59eqtri 2752 . . . . 5 (1..^(♯‘𝐹)) = {1}
6160raleqi 3287 . . . 4 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
62 neeq2 2988 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
63 fveq2 6822 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
6463neeq2d 2985 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
6562, 64imbi12d 344 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
6638, 65ralsn 4633 . . . 4 (∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6761, 66bitri 275 . . 3 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6867ralbii 3075 . 2 (∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6954, 68sylibr 234 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {csn 4577  {ctp 4581  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  2c2 12183  3c3 12184  ..^cfzo 13557  chash 14237  ⟨“cs2 14748  ⟨“cs3 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756
This theorem is referenced by:  2pthd  29885
  Copyright terms: Public domain W3C validator