MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthdlem1 Structured version   Visualization version   GIF version

Theorem 2pthdlem1 29912
Description: Lemma 1 for 2pthd 29922. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
Assertion
Ref Expression
2pthdlem1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝑉   𝑗,𝐹,𝑘   𝑃,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝐾(𝑗,𝑘)   𝑉(𝑗)

Proof of Theorem 2pthdlem1
StepHypRef Expression
1 2wlkd.n . . . 4 (𝜑 → (𝐴𝐵𝐵𝐶))
2 2wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶”⟩
3 2wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾”⟩
4 2wlkd.s . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
52, 3, 42wlkdlem3 29909 . . . 4 (𝜑 → ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶))
6 simpl 482 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
7 simpr 484 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
86, 7neeq12d 2993 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
98bicomd 223 . . . . . . . . . 10 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1093adant3 1132 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
1110biimpcd 249 . . . . . . . 8 (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1211adantr 480 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘0) ≠ (𝑃‘1)))
1312imp 406 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘0) ≠ (𝑃‘1))
1413a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)))
15 eqid 2735 . . . . . 6 1 = 1
16 eqneqall 2943 . . . . . 6 (1 = 1 → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
1715, 16mp1i 13 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)))
18 simpr 484 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) = 𝐶)
19 simpl 482 . . . . . . . . . . . 12 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘1) = 𝐵)
2018, 19neeq12d 2993 . . . . . . . . . . 11 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → ((𝑃‘2) ≠ (𝑃‘1) ↔ 𝐶𝐵))
21 necom 2985 . . . . . . . . . . 11 (𝐶𝐵𝐵𝐶)
2220, 21bitr2di 288 . . . . . . . . . 10 (((𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
23223adant1 1130 . . . . . . . . 9 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝐵𝐶 ↔ (𝑃‘2) ≠ (𝑃‘1)))
2423biimpcd 249 . . . . . . . 8 (𝐵𝐶 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2524adantl 481 . . . . . . 7 ((𝐴𝐵𝐵𝐶) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶) → (𝑃‘2) ≠ (𝑃‘1)))
2625imp 406 . . . . . 6 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (𝑃‘2) ≠ (𝑃‘1))
2726a1d 25 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1)))
2814, 17, 273jca 1128 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵 ∧ (𝑃‘2) = 𝐶)) → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
291, 5, 28syl2anc 584 . . 3 (𝜑 → ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
302fveq2i 6879 . . . . . . . 8 (♯‘𝑃) = (♯‘⟨“𝐴𝐵𝐶”⟩)
31 s3len 14913 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3230, 31eqtri 2758 . . . . . . 7 (♯‘𝑃) = 3
3332oveq2i 7416 . . . . . 6 (0..^(♯‘𝑃)) = (0..^3)
34 fzo0to3tp 13768 . . . . . 6 (0..^3) = {0, 1, 2}
3533, 34eqtri 2758 . . . . 5 (0..^(♯‘𝑃)) = {0, 1, 2}
3635raleqi 3303 . . . 4 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
37 c0ex 11229 . . . . 5 0 ∈ V
38 1ex 11231 . . . . 5 1 ∈ V
39 2ex 12317 . . . . 5 2 ∈ V
40 neeq1 2994 . . . . . 6 (𝑘 = 0 → (𝑘 ≠ 1 ↔ 0 ≠ 1))
41 fveq2 6876 . . . . . . 7 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
4241neeq1d 2991 . . . . . 6 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘1)))
4340, 42imbi12d 344 . . . . 5 (𝑘 = 0 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1))))
44 neeq1 2994 . . . . . 6 (𝑘 = 1 → (𝑘 ≠ 1 ↔ 1 ≠ 1))
45 fveq2 6876 . . . . . . 7 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
4645neeq1d 2991 . . . . . 6 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘1) ≠ (𝑃‘1)))
4744, 46imbi12d 344 . . . . 5 (𝑘 = 1 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1))))
48 neeq1 2994 . . . . . 6 (𝑘 = 2 → (𝑘 ≠ 1 ↔ 2 ≠ 1))
49 fveq2 6876 . . . . . . 7 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
5049neeq1d 2991 . . . . . 6 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘1) ↔ (𝑃‘2) ≠ (𝑃‘1)))
5148, 50imbi12d 344 . . . . 5 (𝑘 = 2 → ((𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5237, 38, 39, 43, 47, 51raltp 4681 . . . 4 (∀𝑘 ∈ {0, 1, 2} (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5336, 52bitri 275 . . 3 (∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)) ↔ ((0 ≠ 1 → (𝑃‘0) ≠ (𝑃‘1)) ∧ (1 ≠ 1 → (𝑃‘1) ≠ (𝑃‘1)) ∧ (2 ≠ 1 → (𝑃‘2) ≠ (𝑃‘1))))
5429, 53sylibr 234 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
553fveq2i 6879 . . . . . . . 8 (♯‘𝐹) = (♯‘⟨“𝐽𝐾”⟩)
56 s2len 14908 . . . . . . . 8 (♯‘⟨“𝐽𝐾”⟩) = 2
5755, 56eqtri 2758 . . . . . . 7 (♯‘𝐹) = 2
5857oveq2i 7416 . . . . . 6 (1..^(♯‘𝐹)) = (1..^2)
59 fzo12sn 13764 . . . . . 6 (1..^2) = {1}
6058, 59eqtri 2758 . . . . 5 (1..^(♯‘𝐹)) = {1}
6160raleqi 3303 . . . 4 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
62 neeq2 2995 . . . . . 6 (𝑗 = 1 → (𝑘𝑗𝑘 ≠ 1))
63 fveq2 6876 . . . . . . 7 (𝑗 = 1 → (𝑃𝑗) = (𝑃‘1))
6463neeq2d 2992 . . . . . 6 (𝑗 = 1 → ((𝑃𝑘) ≠ (𝑃𝑗) ↔ (𝑃𝑘) ≠ (𝑃‘1)))
6562, 64imbi12d 344 . . . . 5 (𝑗 = 1 → ((𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1))))
6638, 65ralsn 4657 . . . 4 (∀𝑗 ∈ {1} (𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6761, 66bitri 275 . . 3 (∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ (𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6867ralbii 3082 . 2 (∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)) ↔ ∀𝑘 ∈ (0..^(♯‘𝑃))(𝑘 ≠ 1 → (𝑃𝑘) ≠ (𝑃‘1)))
6954, 68sylibr 234 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^(♯‘𝐹))(𝑘𝑗 → (𝑃𝑘) ≠ (𝑃𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {csn 4601  {ctp 4605  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  2c2 12295  3c3 12296  ..^cfzo 13671  chash 14348  ⟨“cs2 14860  ⟨“cs3 14861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868
This theorem is referenced by:  2pthd  29922
  Copyright terms: Public domain W3C validator