MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem5 Structured version   Visualization version   GIF version

Theorem 3wlkdlem5 29405
Description: Lemma 5 for 3wlkd 29412. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
Assertion
Ref Expression
3wlkdlem5 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem5
StepHypRef Expression
1 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
2 simpl 483 . . . . 5 ((𝐴𝐵𝐴𝐶) → 𝐴𝐵)
3 simpl 483 . . . . 5 ((𝐵𝐶𝐵𝐷) → 𝐵𝐶)
4 id 22 . . . . 5 (𝐶𝐷𝐶𝐷)
52, 3, 43anim123i 1151 . . . 4 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → (𝐴𝐵𝐵𝐶𝐶𝐷))
61, 5syl 17 . . 3 (𝜑 → (𝐴𝐵𝐵𝐶𝐶𝐷))
7 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
8 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
9 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
107, 8, 93wlkdlem3 29403 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
11 simpl 483 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
12 simpr 485 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
1311, 12neeq12d 3002 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1413adantr 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1512adantr 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
16 simpl 483 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
1716adantl 482 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
1815, 17neeq12d 3002 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
19 simpr 485 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2016, 19neeq12d 3002 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶𝐷))
2120adantl 482 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶𝐷))
2214, 18, 213anbi123d 1436 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴𝐵𝐵𝐶𝐶𝐷)))
2310, 22syl 17 . . 3 (𝜑 → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴𝐵𝐵𝐶𝐶𝐷)))
246, 23mpbird 256 . 2 (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
257, 83wlkdlem2 29402 . . . 4 (0..^(♯‘𝐹)) = {0, 1, 2}
2625raleqi 3323 . . 3 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
27 c0ex 11204 . . . 4 0 ∈ V
28 1ex 11206 . . . 4 1 ∈ V
29 2ex 12285 . . . 4 2 ∈ V
30 fveq2 6888 . . . . 5 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
31 fv0p1e1 12331 . . . . 5 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
3230, 31neeq12d 3002 . . . 4 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
33 fveq2 6888 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
34 oveq1 7412 . . . . . . 7 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
35 1p1e2 12333 . . . . . . 7 (1 + 1) = 2
3634, 35eqtrdi 2788 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = 2)
3736fveq2d 6892 . . . . 5 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
3833, 37neeq12d 3002 . . . 4 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2)))
39 fveq2 6888 . . . . 5 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
40 oveq1 7412 . . . . . . 7 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
41 2p1e3 12350 . . . . . . 7 (2 + 1) = 3
4240, 41eqtrdi 2788 . . . . . 6 (𝑘 = 2 → (𝑘 + 1) = 3)
4342fveq2d 6892 . . . . 5 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
4439, 43neeq12d 3002 . . . 4 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘2) ≠ (𝑃‘3)))
4527, 28, 29, 32, 38, 44raltp 4708 . . 3 (∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
4626, 45bitri 274 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
4724, 46sylibr 233 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  {ctp 4631  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  2c2 12263  3c3 12264  ..^cfzo 13623  chash 14286  ⟨“cs3 14789  ⟨“cs4 14790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-s4 14797
This theorem is referenced by:  3wlkd  29412
  Copyright terms: Public domain W3C validator