MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem5 Structured version   Visualization version   GIF version

Theorem 3wlkdlem5 27875
Description: Lemma 5 for 3wlkd 27882. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
Assertion
Ref Expression
3wlkdlem5 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem5
StepHypRef Expression
1 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
2 simpl 483 . . . . 5 ((𝐴𝐵𝐴𝐶) → 𝐴𝐵)
3 simpl 483 . . . . 5 ((𝐵𝐶𝐵𝐷) → 𝐵𝐶)
4 id 22 . . . . 5 (𝐶𝐷𝐶𝐷)
52, 3, 43anim123i 1145 . . . 4 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → (𝐴𝐵𝐵𝐶𝐶𝐷))
61, 5syl 17 . . 3 (𝜑 → (𝐴𝐵𝐵𝐶𝐶𝐷))
7 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
8 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
9 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
107, 8, 93wlkdlem3 27873 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
11 simpl 483 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
12 simpr 485 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
1311, 12neeq12d 3082 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1413adantr 481 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1512adantr 481 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
16 simpl 483 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
1716adantl 482 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
1815, 17neeq12d 3082 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
19 simpr 485 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2016, 19neeq12d 3082 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶𝐷))
2120adantl 482 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶𝐷))
2214, 18, 213anbi123d 1429 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴𝐵𝐵𝐶𝐶𝐷)))
2310, 22syl 17 . . 3 (𝜑 → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴𝐵𝐵𝐶𝐶𝐷)))
246, 23mpbird 258 . 2 (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
257, 83wlkdlem2 27872 . . . 4 (0..^(♯‘𝐹)) = {0, 1, 2}
2625raleqi 3419 . . 3 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
27 c0ex 10629 . . . 4 0 ∈ V
28 1ex 10631 . . . 4 1 ∈ V
29 2ex 11708 . . . 4 2 ∈ V
30 fveq2 6669 . . . . 5 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
31 fv0p1e1 11754 . . . . 5 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
3230, 31neeq12d 3082 . . . 4 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
33 fveq2 6669 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
34 oveq1 7157 . . . . . . 7 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
35 1p1e2 11756 . . . . . . 7 (1 + 1) = 2
3634, 35syl6eq 2877 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = 2)
3736fveq2d 6673 . . . . 5 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
3833, 37neeq12d 3082 . . . 4 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2)))
39 fveq2 6669 . . . . 5 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
40 oveq1 7157 . . . . . . 7 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
41 2p1e3 11773 . . . . . . 7 (2 + 1) = 3
4240, 41syl6eq 2877 . . . . . 6 (𝑘 = 2 → (𝑘 + 1) = 3)
4342fveq2d 6673 . . . . 5 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
4439, 43neeq12d 3082 . . . 4 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘2) ≠ (𝑃‘3)))
4527, 28, 29, 32, 38, 44raltp 4640 . . 3 (∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
4626, 45bitri 276 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
4724, 46sylibr 235 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  {ctp 4568  cfv 6354  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  2c2 11686  3c3 11687  ..^cfzo 13028  chash 13685  ⟨“cs3 14199  ⟨“cs4 14200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-fzo 13029  df-hash 13686  df-word 13857  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-s4 14207
This theorem is referenced by:  3wlkd  27882
  Copyright terms: Public domain W3C validator