MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3wlkdlem5 Structured version   Visualization version   GIF version

Theorem 3wlkdlem5 28092
Description: Lemma 5 for 3wlkd 28099. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
Assertion
Ref Expression
3wlkdlem5 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐽   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝐹   𝑃,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem 3wlkdlem5
StepHypRef Expression
1 3wlkd.n . . . 4 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
2 simpl 486 . . . . 5 ((𝐴𝐵𝐴𝐶) → 𝐴𝐵)
3 simpl 486 . . . . 5 ((𝐵𝐶𝐵𝐷) → 𝐵𝐶)
4 id 22 . . . . 5 (𝐶𝐷𝐶𝐷)
52, 3, 43anim123i 1152 . . . 4 (((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷) → (𝐴𝐵𝐵𝐶𝐶𝐷))
61, 5syl 17 . . 3 (𝜑 → (𝐴𝐵𝐵𝐶𝐶𝐷))
7 3wlkd.p . . . . 5 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
8 3wlkd.f . . . . 5 𝐹 = ⟨“𝐽𝐾𝐿”⟩
9 3wlkd.s . . . . 5 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
107, 8, 93wlkdlem3 28090 . . . 4 (𝜑 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)))
11 simpl 486 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘0) = 𝐴)
12 simpr 488 . . . . . . 7 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → (𝑃‘1) = 𝐵)
1311, 12neeq12d 2995 . . . . . 6 (((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1413adantr 484 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘0) ≠ (𝑃‘1) ↔ 𝐴𝐵))
1512adantr 484 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘1) = 𝐵)
16 simpl 486 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘2) = 𝐶)
1716adantl 485 . . . . . 6 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (𝑃‘2) = 𝐶)
1815, 17neeq12d 2995 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘1) ≠ (𝑃‘2) ↔ 𝐵𝐶))
19 simpr 488 . . . . . . 7 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → (𝑃‘3) = 𝐷)
2016, 19neeq12d 2995 . . . . . 6 (((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶𝐷))
2120adantl 485 . . . . 5 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → ((𝑃‘2) ≠ (𝑃‘3) ↔ 𝐶𝐷))
2214, 18, 213anbi123d 1437 . . . 4 ((((𝑃‘0) = 𝐴 ∧ (𝑃‘1) = 𝐵) ∧ ((𝑃‘2) = 𝐶 ∧ (𝑃‘3) = 𝐷)) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴𝐵𝐵𝐶𝐶𝐷)))
2310, 22syl 17 . . 3 (𝜑 → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)) ↔ (𝐴𝐵𝐵𝐶𝐶𝐷)))
246, 23mpbird 260 . 2 (𝜑 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
257, 83wlkdlem2 28089 . . . 4 (0..^(♯‘𝐹)) = {0, 1, 2}
2625raleqi 3313 . . 3 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
27 c0ex 10706 . . . 4 0 ∈ V
28 1ex 10708 . . . 4 1 ∈ V
29 2ex 11786 . . . 4 2 ∈ V
30 fveq2 6668 . . . . 5 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
31 fv0p1e1 11832 . . . . 5 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
3230, 31neeq12d 2995 . . . 4 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
33 fveq2 6668 . . . . 5 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
34 oveq1 7171 . . . . . . 7 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
35 1p1e2 11834 . . . . . . 7 (1 + 1) = 2
3634, 35eqtrdi 2789 . . . . . 6 (𝑘 = 1 → (𝑘 + 1) = 2)
3736fveq2d 6672 . . . . 5 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
3833, 37neeq12d 2995 . . . 4 (𝑘 = 1 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘1) ≠ (𝑃‘2)))
39 fveq2 6668 . . . . 5 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
40 oveq1 7171 . . . . . . 7 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
41 2p1e3 11851 . . . . . . 7 (2 + 1) = 3
4240, 41eqtrdi 2789 . . . . . 6 (𝑘 = 2 → (𝑘 + 1) = 3)
4342fveq2d 6672 . . . . 5 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
4439, 43neeq12d 2995 . . . 4 (𝑘 = 2 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘2) ≠ (𝑃‘3)))
4527, 28, 29, 32, 38, 44raltp 4593 . . 3 (∀𝑘 ∈ {0, 1, 2} (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
4626, 45bitri 278 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘3)))
4724, 46sylibr 237 1 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  {ctp 4517  cfv 6333  (class class class)co 7164  0cc0 10608  1c1 10609   + caddc 10611  2c2 11764  3c3 11765  ..^cfzo 13117  chash 13775  ⟨“cs3 14286  ⟨“cs4 14287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-fzo 13118  df-hash 13776  df-word 13949  df-concat 14005  df-s1 14032  df-s2 14292  df-s3 14293  df-s4 14294
This theorem is referenced by:  3wlkd  28099
  Copyright terms: Public domain W3C validator