![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelopabga | Structured version Visualization version GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
opelopabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
opelopabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5529 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | opelopabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
3 | 2 | copsex2g 5495 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜓)) |
4 | 1, 3 | bitrid 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 〈cop 4636 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5212 |
This theorem is referenced by: brabga 5536 opelopab2a 5537 opelopaba 5538 opelopabg 5540 rbropapd 5566 fmptsng 7177 canthwelem 10675 iswlk 29496 fmlafvel 35123 satfv0fvfmla0 35151 satfv1fvfmla1 35161 isrngo 37498 tfsconcatb0 42912 sprsymrelf1lem 46965 isupwlk 47381 uspgrsprfo 47393 |
Copyright terms: Public domain | W3C validator |