![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fundif | Structured version Visualization version GIF version |
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
fundif | ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldif 5442 | . . 3 ⊢ (Rel 𝐹 → Rel (𝐹 ∖ 𝐴)) | |
2 | brdif 4896 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦)) | |
3 | brdif 4896 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) | |
4 | pm2.27 42 | . . . . . . . 8 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) | |
5 | 4 | ad2ant2r 754 | . . . . . . 7 ⊢ (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
6 | 2, 3, 5 | syl2anb 592 | . . . . . 6 ⊢ ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
7 | 6 | com12 32 | . . . . 5 ⊢ (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
8 | 7 | alimi 1907 | . . . 4 ⊢ (∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
9 | 8 | 2alimi 1908 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
10 | 1, 9 | anim12i 607 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) |
11 | dffun2 6111 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
12 | dffun2 6111 | . 2 ⊢ (Fun (𝐹 ∖ 𝐴) ↔ (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) | |
13 | 10, 11, 12 | 3imtr4i 284 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∀wal 1651 ∖ cdif 3766 class class class wbr 4843 Rel wrel 5317 Fun wfun 6095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-id 5220 df-rel 5319 df-cnv 5320 df-co 5321 df-fun 6103 |
This theorem is referenced by: fundmge2nop 13524 fun2dmnop 13526 |
Copyright terms: Public domain | W3C validator |