Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fundif | Structured version Visualization version GIF version |
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
fundif | ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldif 5714 | . . 3 ⊢ (Rel 𝐹 → Rel (𝐹 ∖ 𝐴)) | |
2 | brdif 5123 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦)) | |
3 | brdif 5123 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) | |
4 | pm2.27 42 | . . . . . . . 8 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) | |
5 | 4 | ad2ant2r 743 | . . . . . . 7 ⊢ (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
6 | 2, 3, 5 | syl2anb 597 | . . . . . 6 ⊢ ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
7 | 6 | com12 32 | . . . . 5 ⊢ (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
8 | 7 | alimi 1815 | . . . 4 ⊢ (∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
9 | 8 | 2alimi 1816 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
10 | 1, 9 | anim12i 612 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) |
11 | dffun2 6428 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
12 | dffun2 6428 | . 2 ⊢ (Fun (𝐹 ∖ 𝐴) ↔ (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) | |
13 | 10, 11, 12 | 3imtr4i 291 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∖ cdif 3880 class class class wbr 5070 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: fundmge2nop 14135 fun2dmnop 14137 |
Copyright terms: Public domain | W3C validator |