MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundif Structured version   Visualization version   GIF version

Theorem fundif 6467
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem fundif
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 5714 . . 3 (Rel 𝐹 → Rel (𝐹𝐴))
2 brdif 5123 . . . . . . 7 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦))
3 brdif 5123 . . . . . . 7 (𝑥(𝐹𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧))
4 pm2.27 42 . . . . . . . 8 ((𝑥𝐹𝑦𝑥𝐹𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
54ad2ant2r 743 . . . . . . 7 (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
62, 3, 5syl2anb 597 . . . . . 6 ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
76com12 32 . . . . 5 (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
87alimi 1815 . . . 4 (∀𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
982alimi 1816 . . 3 (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
101, 9anim12i 612 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
11 dffun2 6428 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
12 dffun2 6428 . 2 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
1310, 11, 123imtr4i 291 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  cdif 3880   class class class wbr 5070  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  fundmge2nop  14135  fun2dmnop  14137
  Copyright terms: Public domain W3C validator