| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fundif | Structured version Visualization version GIF version | ||
| Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| fundif | ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldif 5799 | . . 3 ⊢ (Rel 𝐹 → Rel (𝐹 ∖ 𝐴)) | |
| 2 | brdif 5177 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦)) | |
| 3 | brdif 5177 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) | |
| 4 | pm2.27 42 | . . . . . . . 8 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) | |
| 5 | 4 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
| 6 | 2, 3, 5 | syl2anb 598 | . . . . . 6 ⊢ ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
| 7 | 6 | com12 32 | . . . . 5 ⊢ (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
| 8 | 7 | alimi 1811 | . . . 4 ⊢ (∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
| 9 | 8 | 2alimi 1812 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
| 10 | 1, 9 | anim12i 613 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) |
| 11 | dffun2 6546 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
| 12 | dffun2 6546 | . 2 ⊢ (Fun (𝐹 ∖ 𝐴) ↔ (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) | |
| 13 | 10, 11, 12 | 3imtr4i 292 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∖ cdif 3928 class class class wbr 5124 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: fundmge2nop 14526 fun2dmnop 14528 |
| Copyright terms: Public domain | W3C validator |