MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundif Structured version   Visualization version   GIF version

Theorem fundif 6537
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem fundif
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 5761 . . 3 (Rel 𝐹 → Rel (𝐹𝐴))
2 brdif 5148 . . . . . . 7 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦))
3 brdif 5148 . . . . . . 7 (𝑥(𝐹𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧))
4 pm2.27 42 . . . . . . . 8 ((𝑥𝐹𝑦𝑥𝐹𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
54ad2ant2r 747 . . . . . . 7 (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
62, 3, 5syl2anb 598 . . . . . 6 ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
76com12 32 . . . . 5 (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
87alimi 1812 . . . 4 (∀𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
982alimi 1813 . . 3 (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
101, 9anim12i 613 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
11 dffun2 6498 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
12 dffun2 6498 . 2 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
1310, 11, 123imtr4i 292 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539  cdif 3895   class class class wbr 5095  Rel wrel 5626  Fun wfun 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-fun 6490
This theorem is referenced by:  fundmge2nop  14414  fun2dmnop  14416
  Copyright terms: Public domain W3C validator