| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relsdom | ⊢ Rel ≺ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8878 | . 2 ⊢ Rel ≼ | |
| 2 | reldif 5758 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
| 3 | df-sdom 8875 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 4 | 3 | releqi 5721 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
| 5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3900 Rel wrel 5624 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-dom 8874 df-sdom 8875 |
| This theorem is referenced by: domdifsn 8977 sdomirr 9031 sdomdif 9042 sucdom2 9117 0sdom1dom 9135 1sdom2dom 9143 unxpdom 9148 unxpdom2 9149 sucxpdom 9150 isfinite2 9187 fin2inf 9193 fodomfir 9218 card2on 9446 djuxpdom 10080 djufi 10081 infdif 10102 cfslb2n 10162 isfin5 10193 isfin6 10194 isfin4p1 10209 fin56 10287 fin67 10289 sdomsdomcard 10454 gchi 10518 canthp1lem1 10546 canthp1lem2 10547 canthp1 10548 frgpnabl 19754 fphpd 42799 sdomne0 43396 sdomne0d 43397 |
| Copyright terms: Public domain | W3C validator |