Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version |
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relsdom | ⊢ Rel ≺ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8697 | . 2 ⊢ Rel ≼ | |
2 | reldif 5714 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
3 | df-sdom 8694 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
4 | 3 | releqi 5678 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
5 | 2, 4 | sylibr 233 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3880 Rel wrel 5585 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: domdifsn 8795 sucdom2 8822 sdom0 8845 sdomirr 8850 sdomdif 8861 sdom1 8952 unxpdom 8959 unxpdom2 8960 sucxpdom 8961 isfinite2 9002 fin2inf 9007 card2on 9243 djuxpdom 9872 djufi 9873 infdif 9896 cfslb2n 9955 isfin5 9986 isfin6 9987 isfin4p1 10002 fin56 10080 fin67 10082 sdomsdomcard 10247 gchi 10311 canthp1lem1 10339 canthp1lem2 10340 canthp1 10341 frgpnabl 19391 fphpd 40554 |
Copyright terms: Public domain | W3C validator |