![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version |
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relsdom | ⊢ Rel ≺ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 9009 | . 2 ⊢ Rel ≼ | |
2 | reldif 5839 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
3 | df-sdom 9006 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
4 | 3 | releqi 5801 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3973 Rel wrel 5705 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: domdifsn 9120 sucdom2OLD 9148 sdom0OLD 9175 sdomirr 9180 sdomdif 9191 sucdom2 9269 0sdom1dom 9301 sdom1OLD 9306 1sdom2dom 9310 unxpdom 9316 unxpdom2 9317 sucxpdom 9318 isfinite2 9362 fin2inf 9370 fodomfir 9396 card2on 9623 djuxpdom 10255 djufi 10256 infdif 10277 cfslb2n 10337 isfin5 10368 isfin6 10369 isfin4p1 10384 fin56 10462 fin67 10464 sdomsdomcard 10629 gchi 10693 canthp1lem1 10721 canthp1lem2 10722 canthp1 10723 frgpnabl 19917 fphpd 42772 sdomne0 43375 sdomne0d 43376 |
Copyright terms: Public domain | W3C validator |