| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relsdom | ⊢ Rel ≺ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8901 | . 2 ⊢ Rel ≼ | |
| 2 | reldif 5769 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
| 3 | df-sdom 8898 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 4 | 3 | releqi 5732 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
| 5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3908 Rel wrel 5636 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-dom 8897 df-sdom 8898 |
| This theorem is referenced by: domdifsn 9001 sdomirr 9055 sdomdif 9066 sucdom2 9144 0sdom1dom 9162 1sdom2dom 9170 unxpdom 9176 unxpdom2 9177 sucxpdom 9178 isfinite2 9221 fin2inf 9229 fodomfir 9255 card2on 9483 djuxpdom 10115 djufi 10116 infdif 10137 cfslb2n 10197 isfin5 10228 isfin6 10229 isfin4p1 10244 fin56 10322 fin67 10324 sdomsdomcard 10489 gchi 10553 canthp1lem1 10581 canthp1lem2 10582 canthp1 10583 frgpnabl 19789 fphpd 42797 sdomne0 43395 sdomne0d 43396 |
| Copyright terms: Public domain | W3C validator |