Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version |
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relsdom | ⊢ Rel ≺ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8574 | . 2 ⊢ Rel ≼ | |
2 | reldif 5669 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
3 | df-sdom 8571 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
4 | 3 | releqi 5633 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
5 | 2, 4 | sylibr 237 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3850 Rel wrel 5540 ≈ cen 8565 ≼ cdom 8566 ≺ csdm 8567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3402 df-dif 3856 df-in 3860 df-ss 3870 df-opab 5103 df-xp 5541 df-rel 5542 df-dom 8570 df-sdom 8571 |
This theorem is referenced by: domdifsn 8662 sucdom2 8689 sdom0 8712 sdomirr 8717 sdomdif 8728 sdom1 8810 unxpdom 8817 unxpdom2 8818 sucxpdom 8819 isfinite2 8863 fin2inf 8868 card2on 9104 djuxpdom 9698 djufi 9699 infdif 9722 cfslb2n 9781 isfin5 9812 isfin6 9813 isfin4p1 9828 fin56 9906 fin67 9908 sdomsdomcard 10073 gchi 10137 canthp1lem1 10165 canthp1lem2 10166 canthp1 10167 frgpnabl 19127 fphpd 40251 |
Copyright terms: Public domain | W3C validator |