| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relsdom | ⊢ Rel ≺ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8924 | . 2 ⊢ Rel ≼ | |
| 2 | reldif 5778 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
| 3 | df-sdom 8921 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 4 | 3 | releqi 5740 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
| 5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3911 Rel wrel 5643 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: domdifsn 9024 sdomirr 9078 sdomdif 9089 sucdom2 9167 0sdom1dom 9185 sdom1OLD 9190 1sdom2dom 9194 unxpdom 9200 unxpdom2 9201 sucxpdom 9202 isfinite2 9245 fin2inf 9253 fodomfir 9279 card2on 9507 djuxpdom 10139 djufi 10140 infdif 10161 cfslb2n 10221 isfin5 10252 isfin6 10253 isfin4p1 10268 fin56 10346 fin67 10348 sdomsdomcard 10513 gchi 10577 canthp1lem1 10605 canthp1lem2 10606 canthp1 10607 frgpnabl 19805 fphpd 42804 sdomne0 43402 sdomne0d 43403 |
| Copyright terms: Public domain | W3C validator |