| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relsdom | ⊢ Rel ≺ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8970 | . 2 ⊢ Rel ≼ | |
| 2 | reldif 5799 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
| 3 | df-sdom 8967 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 4 | 3 | releqi 5761 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
| 5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3928 Rel wrel 5664 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 df-opab 5187 df-xp 5665 df-rel 5666 df-dom 8966 df-sdom 8967 |
| This theorem is referenced by: domdifsn 9073 sucdom2OLD 9101 sdom0OLD 9128 sdomirr 9133 sdomdif 9144 sucdom2 9222 0sdom1dom 9251 sdom1OLD 9256 1sdom2dom 9260 unxpdom 9266 unxpdom2 9267 sucxpdom 9268 isfinite2 9311 fin2inf 9319 fodomfir 9345 card2on 9573 djuxpdom 10205 djufi 10206 infdif 10227 cfslb2n 10287 isfin5 10318 isfin6 10319 isfin4p1 10334 fin56 10412 fin67 10414 sdomsdomcard 10579 gchi 10643 canthp1lem1 10671 canthp1lem2 10672 canthp1 10673 frgpnabl 19861 fphpd 42806 sdomne0 43404 sdomne0d 43405 |
| Copyright terms: Public domain | W3C validator |