Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version |
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relsdom | ⊢ Rel ≺ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8739 | . 2 ⊢ Rel ≼ | |
2 | reldif 5725 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
3 | df-sdom 8736 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
4 | 3 | releqi 5688 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
5 | 2, 4 | sylibr 233 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3884 Rel wrel 5594 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-dom 8735 df-sdom 8736 |
This theorem is referenced by: domdifsn 8841 sucdom2OLD 8869 sdom0OLD 8896 sdomirr 8901 sdomdif 8912 sucdom2 8989 sdom1 9022 unxpdom 9030 unxpdom2 9031 sucxpdom 9032 isfinite2 9072 fin2inf 9077 card2on 9313 djuxpdom 9941 djufi 9942 infdif 9965 cfslb2n 10024 isfin5 10055 isfin6 10056 isfin4p1 10071 fin56 10149 fin67 10151 sdomsdomcard 10316 gchi 10380 canthp1lem1 10408 canthp1lem2 10409 canthp1 10410 frgpnabl 19476 fphpd 40638 |
Copyright terms: Public domain | W3C validator |