![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version |
Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
relsdom | ⊢ Rel ≺ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8941 | . 2 ⊢ Rel ≼ | |
2 | reldif 5805 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
3 | df-sdom 8938 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
4 | 3 | releqi 5767 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
5 | 2, 4 | sylibr 233 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3937 Rel wrel 5671 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 df-opab 5201 df-xp 5672 df-rel 5673 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: domdifsn 9050 sucdom2OLD 9078 sdom0OLD 9105 sdomirr 9110 sdomdif 9121 sucdom2 9202 0sdom1dom 9234 sdom1OLD 9239 1sdom2dom 9243 unxpdom 9249 unxpdom2 9250 sucxpdom 9251 isfinite2 9297 fin2inf 9305 card2on 9545 djuxpdom 10176 djufi 10177 infdif 10200 cfslb2n 10259 isfin5 10290 isfin6 10291 isfin4p1 10306 fin56 10384 fin67 10386 sdomsdomcard 10551 gchi 10615 canthp1lem1 10643 canthp1lem2 10644 canthp1 10645 frgpnabl 19785 fphpd 42043 sdomne0 42653 sdomne0d 42654 |
Copyright terms: Public domain | W3C validator |