| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relsdom | ⊢ Rel ≺ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8875 | . 2 ⊢ Rel ≼ | |
| 2 | reldif 5754 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
| 3 | df-sdom 8872 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 4 | 3 | releqi 5717 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
| 5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3894 Rel wrel 5619 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: domdifsn 8973 sdomirr 9027 sdomdif 9038 sucdom2 9112 0sdom1dom 9130 1sdom2dom 9138 unxpdom 9143 unxpdom2 9144 sucxpdom 9145 isfinite2 9182 fin2inf 9188 fodomfir 9212 card2on 9440 djuxpdom 10077 djufi 10078 infdif 10099 cfslb2n 10159 isfin5 10190 isfin6 10191 isfin4p1 10206 fin56 10284 fin67 10286 sdomsdomcard 10451 gchi 10515 canthp1lem1 10543 canthp1lem2 10544 canthp1 10545 frgpnabl 19787 fphpd 42908 sdomne0 43505 sdomne0d 43506 |
| Copyright terms: Public domain | W3C validator |