| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsdom | Structured version Visualization version GIF version | ||
| Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| relsdom | ⊢ Rel ≺ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 8963 | . 2 ⊢ Rel ≼ | |
| 2 | reldif 5794 | . . 3 ⊢ (Rel ≼ → Rel ( ≼ ∖ ≈ )) | |
| 3 | df-sdom 8960 | . . . 4 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 4 | 3 | releqi 5756 | . . 3 ⊢ (Rel ≺ ↔ Rel ( ≼ ∖ ≈ )) |
| 5 | 2, 4 | sylibr 234 | . 2 ⊢ (Rel ≼ → Rel ≺ ) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ Rel ≺ |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3923 Rel wrel 5659 ≈ cen 8954 ≼ cdom 8955 ≺ csdm 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 df-dom 8959 df-sdom 8960 |
| This theorem is referenced by: domdifsn 9066 sucdom2OLD 9094 sdom0OLD 9121 sdomirr 9126 sdomdif 9137 sucdom2 9215 0sdom1dom 9244 sdom1OLD 9249 1sdom2dom 9253 unxpdom 9259 unxpdom2 9260 sucxpdom 9261 isfinite2 9304 fin2inf 9312 fodomfir 9338 card2on 9566 djuxpdom 10198 djufi 10199 infdif 10220 cfslb2n 10280 isfin5 10311 isfin6 10312 isfin4p1 10327 fin56 10405 fin67 10407 sdomsdomcard 10572 gchi 10636 canthp1lem1 10664 canthp1lem2 10665 canthp1 10666 frgpnabl 19854 fphpd 42786 sdomne0 43384 sdomne0d 43385 |
| Copyright terms: Public domain | W3C validator |