Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumhashmul Structured version   Visualization version   GIF version

Theorem gsumhashmul 31325
Description: Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumhashmul.b 𝐵 = (Base‘𝐺)
gsumhashmul.z 0 = (0g𝐺)
gsumhashmul.x · = (.g𝐺)
gsumhashmul.g (𝜑𝐺 ∈ CMnd)
gsumhashmul.f (𝜑𝐹:𝐴𝐵)
gsumhashmul.1 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumhashmul (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   · (𝑥)

Proof of Theorem gsumhashmul
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumhashmul.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2 suppssdm 8002 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
32, 1fssdm 6629 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
41, 3feqresmpt 6847 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥)))
54oveq2d 7300 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))))
6 gsumhashmul.b . . . . . 6 𝐵 = (Base‘𝐺)
7 gsumhashmul.z . . . . . 6 0 = (0g𝐺)
8 gsumhashmul.g . . . . . 6 (𝜑𝐺 ∈ CMnd)
9 gsumhashmul.1 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
10 relfsupp 9139 . . . . . . . . 9 Rel finSupp
1110brrelex1i 5644 . . . . . . . 8 (𝐹 finSupp 0𝐹 ∈ V)
129, 11syl 17 . . . . . . 7 (𝜑𝐹 ∈ V)
131ffnd 6610 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
1412, 13fndmexd 7762 . . . . . 6 (𝜑𝐴 ∈ V)
15 ssidd 3945 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
166, 7, 8, 14, 1, 15, 9gsumres 19523 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg 𝐹))
17 nfcv 2908 . . . . . 6 𝑥(𝐹‘(1st𝑧))
18 fveq2 6783 . . . . . 6 (𝑥 = (1st𝑧) → (𝐹𝑥) = (𝐹‘(1st𝑧)))
199fsuppimpd 9144 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
20 ssidd 3945 . . . . . 6 (𝜑𝐵𝐵)
211adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
223sselda 3922 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥𝐴)
2321, 22ffvelrnd 6971 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹𝑥) ∈ 𝐵)
241ffund 6613 . . . . . . . . 9 (𝜑 → Fun 𝐹)
25 funrel 6458 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
26 reldif 5727 . . . . . . . . 9 (Rel 𝐹 → Rel (𝐹 ∖ (V × { 0 })))
2724, 25, 263syl 18 . . . . . . . 8 (𝜑 → Rel (𝐹 ∖ (V × { 0 })))
28 1stdm 7890 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
2927, 28sylan 580 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
307fvexi 6797 . . . . . . . . . . . 12 0 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
32 fressupp 31031 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3324, 12, 31, 32syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3433dmeqd 5817 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ∖ (V × { 0 })))
352a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ dom 𝐹)
36 ssdmres 5917 . . . . . . . . . 10 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3735, 36sylib 217 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3834, 37eqtr3d 2781 . . . . . . . 8 (𝜑 → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
3938adantr 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
4029, 39eleqtrd 2842 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ (𝐹 supp 0 ))
4124funresd 6484 . . . . . . . . . . 11 (𝜑 → Fun (𝐹 ↾ (𝐹 supp 0 )))
4241adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
4337eleq2d 2825 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (𝐹 supp 0 )))
4443biimpar 478 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
45 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ (𝐹 supp 0 ))
4645fvresd 6803 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
47 funopfvb 6834 . . . . . . . . . . 11 ((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 ))))
4847biimpa 477 . . . . . . . . . 10 (((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥)) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
4942, 44, 46, 48syl21anc 835 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
5033adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
5149, 50eleqtrd 2842 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ∖ (V × { 0 })))
52 eqeq2 2751 . . . . . . . . . . 11 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (𝑧 = 𝑣𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
5352bibi2d 343 . . . . . . . . . 10 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → ((𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5453ralbidv 3113 . . . . . . . . 9 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5554adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑣 = ⟨𝑥, (𝐹𝑥)⟩) → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
56 fvexd 6798 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (2nd𝑧) ∈ V)
5727ad3antrrr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → Rel (𝐹 ∖ (V × { 0 })))
58 simplr 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
59 1st2nd 7889 . . . . . . . . . . . . . . . . 17 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
6057, 58, 59syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
61 opeq1 4805 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6261adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6360, 62eqtr4d 2782 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (2nd𝑧)⟩)
64 difssd 4068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ∖ (V × { 0 })) ⊆ 𝐹)
6564sselda 3922 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
6665adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧𝐹)
6763, 66eqeltrrd 2841 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)
6863, 67jca 512 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
69 opeq2 4806 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, (2nd𝑧)⟩)
7069eqeq2d 2750 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, (2nd𝑧)⟩))
7169eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
7270, 71anbi12d 631 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)))
7356, 68, 72spcedv 3538 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
74 vex 3437 . . . . . . . . . . . . . 14 𝑥 ∈ V
7574elsnres 5934 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐹 ↾ {𝑥}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
7673, 75sylibr 233 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ↾ {𝑥}))
7713ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝐹 Fn 𝐴)
7822ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑥𝐴)
79 fnressn 7039 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8077, 78, 79syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8176, 80eleqtrd 2842 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩})
82 elsni 4579 . . . . . . . . . . 11 (𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩} → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8381, 82syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
84 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8584fveq2d 6787 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → (1st𝑧) = (1st ‘⟨𝑥, (𝐹𝑥)⟩))
86 fvex 6796 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
8774, 86op1st 7848 . . . . . . . . . . 11 (1st ‘⟨𝑥, (𝐹𝑥)⟩) = 𝑥
8885, 87eqtr2di 2796 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑥 = (1st𝑧))
8983, 88impbida 798 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9089ralrimiva 3104 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9151, 55, 90rspcedvd 3564 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
92 reu6 3662 . . . . . . 7 (∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧) ↔ ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
9391, 92sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧))
9417, 6, 7, 18, 8, 19, 20, 23, 40, 93gsummptf1o 19573 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
955, 16, 943eqtr3d 2787 . . . 4 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
96 simpr 485 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
9796eldifad 3900 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
98 funfv1st2nd 7896 . . . . . . 7 ((Fun 𝐹𝑧𝐹) → (𝐹‘(1st𝑧)) = (2nd𝑧))
9924, 97, 98syl2an2r 682 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝐹‘(1st𝑧)) = (2nd𝑧))
10099mpteq2dva 5175 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧))) = (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧)))
101100oveq2d 7300 . . . 4 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
10295, 101eqtrd 2779 . . 3 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
103 nfcv 2908 . . . 4 𝑧(1st𝑡)
104 fvex 6796 . . . . 5 (2nd𝑡) ∈ V
105 fvex 6796 . . . . 5 (1st𝑡) ∈ V
106104, 105op2ndd 7851 . . . 4 (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ → (2nd𝑧) = (1st𝑡))
107 resfnfinfin 9108 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10813, 19, 107syl2anc 584 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10933, 108eqeltrrd 2841 . . . 4 (𝜑 → (𝐹 ∖ (V × { 0 })) ∈ Fin)
11033rneqd 5850 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = ran (𝐹 ∖ (V × { 0 })))
111 rnresss 5930 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ ran 𝐹
1121frnd 6617 . . . . . 6 (𝜑 → ran 𝐹𝐵)
113111, 112sstrid 3933 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
114110, 113eqsstrrd 3961 . . . 4 (𝜑 → ran (𝐹 ∖ (V × { 0 })) ⊆ 𝐵)
115 2ndrn 7891 . . . . 5 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
11627, 115sylan 580 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
117 relcnv 6015 . . . . . . . 8 Rel 𝐹
118 reldif 5727 . . . . . . . 8 (Rel 𝐹 → Rel (𝐹 ∖ ({ 0 } × V)))
119117, 118mp1i 13 . . . . . . 7 (𝜑 → Rel (𝐹 ∖ ({ 0 } × V)))
120 1st2nd 7889 . . . . . . 7 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
121119, 120sylan 580 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
122 cnvdif 6052 . . . . . . . . . 10 (𝐹 ∖ (V × { 0 })) = (𝐹(V × { 0 }))
123 cnvxp 6065 . . . . . . . . . . 11 (V × { 0 }) = ({ 0 } × V)
124123difeq2i 4055 . . . . . . . . . 10 (𝐹(V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
125122, 124eqtri 2767 . . . . . . . . 9 (𝐹 ∖ (V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
126125eqimss2i 3981 . . . . . . . 8 (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 }))
127126a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 })))
128127sselda 3922 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡(𝐹 ∖ (V × { 0 })))
129121, 128eqeltrrd 2841 . . . . 5 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
130105, 104opelcnv 5793 . . . . 5 (⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })) ↔ ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
131129, 130sylib 217 . . . 4 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
13227adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → Rel (𝐹 ∖ (V × { 0 })))
133 eqidd 2740 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} = {𝑧})
134 cnvf1olem 7959 . . . . . . . . 9 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → ( {𝑧} ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑧 = { {𝑧}}))
135134simpld 495 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
136132, 96, 133, 135syl12anc 834 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
137136, 125eleqtrdi 2850 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ ({ 0 } × V)))
138 eqeq2 2751 . . . . . . . . 9 (𝑢 = {𝑧} → (𝑡 = 𝑢𝑡 = {𝑧}))
139138bibi2d 343 . . . . . . . 8 (𝑢 = {𝑧} → ((𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
140139ralbidv 3113 . . . . . . 7 (𝑢 = {𝑧} → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
141140adantl 482 . . . . . 6 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑢 = {𝑧}) → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
142117, 118mp1i 13 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → Rel (𝐹 ∖ ({ 0 } × V)))
143 simplr 766 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
144 simpr 485 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
145 df-rel 5597 . . . . . . . . . . . . . 14 (Rel (𝐹 ∖ ({ 0 } × V)) ↔ (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
146119, 145sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
147146ad3antrrr 727 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
148147, 143sseldd 3923 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (V × V))
149 2nd1st 7888 . . . . . . . . . . 11 (𝑡 ∈ (V × V) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
150148, 149syl 17 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
151144, 150eqtr4d 2782 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = {𝑡})
152 cnvf1olem 7959 . . . . . . . . . 10 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → (𝑧(𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 = {𝑧}))
153152simprd 496 . . . . . . . . 9 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → 𝑡 = {𝑧})
154142, 143, 151, 153syl12anc 834 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 = {𝑧})
15527ad3antrrr 727 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → Rel (𝐹 ∖ (V × { 0 })))
15696ad2antrr 723 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
157 simpr 485 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 = {𝑧})
158 cnvf1olem 7959 . . . . . . . . . . 11 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → (𝑡(𝐹 ∖ (V × { 0 })) ∧ 𝑧 = {𝑡}))
159158simprd 496 . . . . . . . . . 10 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → 𝑧 = {𝑡})
160155, 156, 157, 159syl12anc 834 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = {𝑡})
161146ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
162 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
163161, 162sseldd 3923 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (V × V))
164163, 149syl 17 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
165160, 164eqtrd 2779 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
166154, 165impbida 798 . . . . . . 7 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
167166ralrimiva 3104 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
168137, 141, 167rspcedvd 3564 . . . . 5 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
169 reu6 3662 . . . . 5 (∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
170168, 169sylibr 233 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
171103, 6, 7, 106, 8, 109, 114, 116, 131, 170gsummptf1o 19573 . . 3 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))) = (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))))
172 fveq2 6783 . . . . . 6 (𝑡 = 𝑧 → (1st𝑡) = (1st𝑧))
173172cbvmptv 5188 . . . . 5 (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧))
17433cnveqd 5787 . . . . . . 7 (𝜑(𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
175174, 125eqtr2di 2796 . . . . . 6 (𝜑 → (𝐹 ∖ ({ 0 } × V)) = (𝐹 ↾ (𝐹 supp 0 )))
176175mpteq1d 5170 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
177173, 176eqtrid 2791 . . . 4 (𝜑 → (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
178177oveq2d 7300 . . 3 (𝜑 → (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
179102, 171, 1783eqtrd 2783 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
180 nfcv 2908 . . 3 𝑦(1st𝑧)
181 nfv 1918 . . 3 𝑥𝜑
182 vex 3437 . . . 4 𝑦 ∈ V
18374, 182op1std 7850 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
184 relcnv 6015 . . . 4 Rel (𝐹 ↾ (𝐹 supp 0 ))
185184a1i 11 . . 3 (𝜑 → Rel (𝐹 ↾ (𝐹 supp 0 )))
186 cnvfi 8972 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
187108, 186syl 17 . . 3 (𝜑(𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
188112adantr 481 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → ran 𝐹𝐵)
189184a1i 11 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → Rel (𝐹 ↾ (𝐹 supp 0 )))
190 simpr 485 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → 𝑧(𝐹 ↾ (𝐹 supp 0 )))
191 1stdm 7890 . . . . . . 7 ((Rel (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
192189, 190, 191syl2anc 584 . . . . . 6 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
193 df-rn 5601 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ↾ (𝐹 supp 0 ))
194192, 193eleqtrrdi 2851 . . . . 5 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran (𝐹 ↾ (𝐹 supp 0 )))
195111, 194sselid 3920 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran 𝐹)
196188, 195sseldd 3923 . . 3 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ 𝐵)
197180, 181, 6, 183, 185, 187, 8, 196gsummpt2d 31318 . 2 (𝜑 → (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))) = (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))))
198 df-ima 5603 . . . . . . 7 (𝐹 “ (𝐹 supp 0 )) = ran (𝐹 ↾ (𝐹 supp 0 ))
199 supppreima 31034 . . . . . . . . 9 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
20024, 12, 31, 199syl3anc 1370 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
201200imaeq2d 5972 . . . . . . 7 (𝜑 → (𝐹 “ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
202198, 201eqtr3id 2793 . . . . . 6 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
203 funimacnv 6522 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
20424, 203syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
205 difssd 4068 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹)
206 df-ss 3905 . . . . . . 7 ((ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹 ↔ ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
207205, 206sylib 217 . . . . . 6 (𝜑 → ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
208202, 204, 2073eqtrd 2783 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
209193, 208eqtr3id 2793 . . . 4 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
2108cmnmndd 19418 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
211210adantr 481 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
212108adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
213 imafi2 31055 . . . . . . 7 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
214212, 186, 2133syl 18 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
215193, 113eqsstrrid 3971 . . . . . . 7 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
216215sselda 3922 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥𝐵)
217 gsumhashmul.x . . . . . . 7 · = (.g𝐺)
2186, 217gsumconst 19544 . . . . . 6 ((𝐺 ∈ Mnd ∧ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin ∧ 𝑥𝐵) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
219211, 214, 216, 218syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
220 cnvresima 6138 . . . . . . . 8 ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) = ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 ))
221209eleq2d 2825 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (ran 𝐹 ∖ { 0 })))
222221biimpa 477 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥 ∈ (ran 𝐹 ∖ { 0 }))
223222snssd 4743 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → {𝑥} ⊆ (ran 𝐹 ∖ { 0 }))
224 sspreima 6954 . . . . . . . . . . 11 ((Fun 𝐹 ∧ {𝑥} ⊆ (ran 𝐹 ∖ { 0 })) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
22524, 223, 224syl2an2r 682 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
226200adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
227225, 226sseqtrrd 3963 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ))
228 df-ss 3905 . . . . . . . . 9 ((𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ) ↔ ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
229227, 228sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
230220, 229eqtr2id 2792 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) = ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}))
231230fveq2d 6787 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (♯‘(𝐹 “ {𝑥})) = (♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})))
232231oveq1d 7299 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((♯‘(𝐹 “ {𝑥})) · 𝑥) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
233219, 232eqtr4d 2782 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘(𝐹 “ {𝑥})) · 𝑥))
234209, 233mpteq12dva 5164 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥))) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥)))
235234oveq2d 7300 . 2 (𝜑 → (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
236179, 197, 2353eqtrd 2783 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2107  wral 3065  wrex 3066  ∃!wreu 3067  Vcvv 3433  cdif 3885  cin 3887  wss 3888  {csn 4562  cop 4568   cuni 4840   class class class wbr 5075  cmpt 5158   × cxp 5588  ccnv 5589  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Rel wrel 5595  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  1st c1st 7838  2nd c2nd 7839   supp csupp 7986  Fincfn 8742   finSupp cfsupp 9137  chash 14053  Basecbs 16921  0gc0g 17159   Σg cgsu 17160  Mndcmnd 18394  .gcmg 18709  CMndccmn 19395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-fzo 13392  df-seq 13731  df-hash 14054  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-0g 17161  df-gsum 17162  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397
This theorem is referenced by:  elrspunidl  31615
  Copyright terms: Public domain W3C validator