Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumhashmul Structured version   Visualization version   GIF version

Theorem gsumhashmul 31218
Description: Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumhashmul.b 𝐵 = (Base‘𝐺)
gsumhashmul.z 0 = (0g𝐺)
gsumhashmul.x · = (.g𝐺)
gsumhashmul.g (𝜑𝐺 ∈ CMnd)
gsumhashmul.f (𝜑𝐹:𝐴𝐵)
gsumhashmul.1 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumhashmul (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   · (𝑥)

Proof of Theorem gsumhashmul
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumhashmul.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2 suppssdm 7964 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
32, 1fssdm 6604 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
41, 3feqresmpt 6820 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥)))
54oveq2d 7271 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))))
6 gsumhashmul.b . . . . . 6 𝐵 = (Base‘𝐺)
7 gsumhashmul.z . . . . . 6 0 = (0g𝐺)
8 gsumhashmul.g . . . . . 6 (𝜑𝐺 ∈ CMnd)
9 gsumhashmul.1 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
10 relfsupp 9060 . . . . . . . . 9 Rel finSupp
1110brrelex1i 5634 . . . . . . . 8 (𝐹 finSupp 0𝐹 ∈ V)
129, 11syl 17 . . . . . . 7 (𝜑𝐹 ∈ V)
131ffnd 6585 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
1412, 13fndmexd 7727 . . . . . 6 (𝜑𝐴 ∈ V)
15 ssidd 3940 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
166, 7, 8, 14, 1, 15, 9gsumres 19429 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg 𝐹))
17 nfcv 2906 . . . . . 6 𝑥(𝐹‘(1st𝑧))
18 fveq2 6756 . . . . . 6 (𝑥 = (1st𝑧) → (𝐹𝑥) = (𝐹‘(1st𝑧)))
199fsuppimpd 9065 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
20 ssidd 3940 . . . . . 6 (𝜑𝐵𝐵)
211adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
223sselda 3917 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥𝐴)
2321, 22ffvelrnd 6944 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹𝑥) ∈ 𝐵)
241ffund 6588 . . . . . . . . 9 (𝜑 → Fun 𝐹)
25 funrel 6435 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
26 reldif 5714 . . . . . . . . 9 (Rel 𝐹 → Rel (𝐹 ∖ (V × { 0 })))
2724, 25, 263syl 18 . . . . . . . 8 (𝜑 → Rel (𝐹 ∖ (V × { 0 })))
28 1stdm 7854 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
2927, 28sylan 579 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
307fvexi 6770 . . . . . . . . . . . 12 0 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
32 fressupp 30924 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3324, 12, 31, 32syl3anc 1369 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3433dmeqd 5803 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ∖ (V × { 0 })))
352a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ dom 𝐹)
36 ssdmres 5903 . . . . . . . . . 10 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3735, 36sylib 217 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3834, 37eqtr3d 2780 . . . . . . . 8 (𝜑 → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
3938adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
4029, 39eleqtrd 2841 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ (𝐹 supp 0 ))
4124funresd 6461 . . . . . . . . . . 11 (𝜑 → Fun (𝐹 ↾ (𝐹 supp 0 )))
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
4337eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (𝐹 supp 0 )))
4443biimpar 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
45 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ (𝐹 supp 0 ))
4645fvresd 6776 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
47 funopfvb 6807 . . . . . . . . . . 11 ((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 ))))
4847biimpa 476 . . . . . . . . . 10 (((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥)) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
4942, 44, 46, 48syl21anc 834 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
5033adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
5149, 50eleqtrd 2841 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ∖ (V × { 0 })))
52 eqeq2 2750 . . . . . . . . . . 11 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (𝑧 = 𝑣𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
5352bibi2d 342 . . . . . . . . . 10 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → ((𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5453ralbidv 3120 . . . . . . . . 9 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5554adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑣 = ⟨𝑥, (𝐹𝑥)⟩) → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
56 fvexd 6771 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (2nd𝑧) ∈ V)
5727ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → Rel (𝐹 ∖ (V × { 0 })))
58 simplr 765 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
59 1st2nd 7853 . . . . . . . . . . . . . . . . 17 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
6057, 58, 59syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
61 opeq1 4801 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6261adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6360, 62eqtr4d 2781 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (2nd𝑧)⟩)
64 difssd 4063 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ∖ (V × { 0 })) ⊆ 𝐹)
6564sselda 3917 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧𝐹)
6763, 66eqeltrrd 2840 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)
6863, 67jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
69 opeq2 4802 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, (2nd𝑧)⟩)
7069eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, (2nd𝑧)⟩))
7169eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
7270, 71anbi12d 630 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)))
7356, 68, 72spcedv 3527 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
74 vex 3426 . . . . . . . . . . . . . 14 𝑥 ∈ V
7574elsnres 5920 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐹 ↾ {𝑥}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
7673, 75sylibr 233 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ↾ {𝑥}))
7713ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝐹 Fn 𝐴)
7822ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑥𝐴)
79 fnressn 7012 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8077, 78, 79syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8176, 80eleqtrd 2841 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩})
82 elsni 4575 . . . . . . . . . . 11 (𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩} → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8381, 82syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
84 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8584fveq2d 6760 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → (1st𝑧) = (1st ‘⟨𝑥, (𝐹𝑥)⟩))
86 fvex 6769 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
8774, 86op1st 7812 . . . . . . . . . . 11 (1st ‘⟨𝑥, (𝐹𝑥)⟩) = 𝑥
8885, 87eqtr2di 2796 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑥 = (1st𝑧))
8983, 88impbida 797 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9089ralrimiva 3107 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9151, 55, 90rspcedvd 3555 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
92 reu6 3656 . . . . . . 7 (∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧) ↔ ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
9391, 92sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧))
9417, 6, 7, 18, 8, 19, 20, 23, 40, 93gsummptf1o 19479 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
955, 16, 943eqtr3d 2786 . . . 4 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
96 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
9796eldifad 3895 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
98 funfv1st2nd 7860 . . . . . . 7 ((Fun 𝐹𝑧𝐹) → (𝐹‘(1st𝑧)) = (2nd𝑧))
9924, 97, 98syl2an2r 681 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝐹‘(1st𝑧)) = (2nd𝑧))
10099mpteq2dva 5170 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧))) = (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧)))
101100oveq2d 7271 . . . 4 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
10295, 101eqtrd 2778 . . 3 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
103 nfcv 2906 . . . 4 𝑧(1st𝑡)
104 fvex 6769 . . . . 5 (2nd𝑡) ∈ V
105 fvex 6769 . . . . 5 (1st𝑡) ∈ V
106104, 105op2ndd 7815 . . . 4 (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ → (2nd𝑧) = (1st𝑡))
107 resfnfinfin 9029 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10813, 19, 107syl2anc 583 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10933, 108eqeltrrd 2840 . . . 4 (𝜑 → (𝐹 ∖ (V × { 0 })) ∈ Fin)
11033rneqd 5836 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = ran (𝐹 ∖ (V × { 0 })))
111 rnresss 5916 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ ran 𝐹
1121frnd 6592 . . . . . 6 (𝜑 → ran 𝐹𝐵)
113111, 112sstrid 3928 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
114110, 113eqsstrrd 3956 . . . 4 (𝜑 → ran (𝐹 ∖ (V × { 0 })) ⊆ 𝐵)
115 2ndrn 7855 . . . . 5 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
11627, 115sylan 579 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
117 relcnv 6001 . . . . . . . 8 Rel 𝐹
118 reldif 5714 . . . . . . . 8 (Rel 𝐹 → Rel (𝐹 ∖ ({ 0 } × V)))
119117, 118mp1i 13 . . . . . . 7 (𝜑 → Rel (𝐹 ∖ ({ 0 } × V)))
120 1st2nd 7853 . . . . . . 7 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
121119, 120sylan 579 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
122 cnvdif 6036 . . . . . . . . . 10 (𝐹 ∖ (V × { 0 })) = (𝐹(V × { 0 }))
123 cnvxp 6049 . . . . . . . . . . 11 (V × { 0 }) = ({ 0 } × V)
124123difeq2i 4050 . . . . . . . . . 10 (𝐹(V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
125122, 124eqtri 2766 . . . . . . . . 9 (𝐹 ∖ (V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
126125eqimss2i 3976 . . . . . . . 8 (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 }))
127126a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 })))
128127sselda 3917 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡(𝐹 ∖ (V × { 0 })))
129121, 128eqeltrrd 2840 . . . . 5 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
130105, 104opelcnv 5779 . . . . 5 (⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })) ↔ ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
131129, 130sylib 217 . . . 4 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
13227adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → Rel (𝐹 ∖ (V × { 0 })))
133 eqidd 2739 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} = {𝑧})
134 cnvf1olem 7921 . . . . . . . . 9 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → ( {𝑧} ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑧 = { {𝑧}}))
135134simpld 494 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
136132, 96, 133, 135syl12anc 833 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
137136, 125eleqtrdi 2849 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ ({ 0 } × V)))
138 eqeq2 2750 . . . . . . . . 9 (𝑢 = {𝑧} → (𝑡 = 𝑢𝑡 = {𝑧}))
139138bibi2d 342 . . . . . . . 8 (𝑢 = {𝑧} → ((𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
140139ralbidv 3120 . . . . . . 7 (𝑢 = {𝑧} → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
141140adantl 481 . . . . . 6 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑢 = {𝑧}) → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
142117, 118mp1i 13 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → Rel (𝐹 ∖ ({ 0 } × V)))
143 simplr 765 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
144 simpr 484 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
145 df-rel 5587 . . . . . . . . . . . . . 14 (Rel (𝐹 ∖ ({ 0 } × V)) ↔ (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
146119, 145sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
147146ad3antrrr 726 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
148147, 143sseldd 3918 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (V × V))
149 2nd1st 7852 . . . . . . . . . . 11 (𝑡 ∈ (V × V) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
150148, 149syl 17 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
151144, 150eqtr4d 2781 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = {𝑡})
152 cnvf1olem 7921 . . . . . . . . . 10 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → (𝑧(𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 = {𝑧}))
153152simprd 495 . . . . . . . . 9 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → 𝑡 = {𝑧})
154142, 143, 151, 153syl12anc 833 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 = {𝑧})
15527ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → Rel (𝐹 ∖ (V × { 0 })))
15696ad2antrr 722 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
157 simpr 484 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 = {𝑧})
158 cnvf1olem 7921 . . . . . . . . . . 11 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → (𝑡(𝐹 ∖ (V × { 0 })) ∧ 𝑧 = {𝑡}))
159158simprd 495 . . . . . . . . . 10 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → 𝑧 = {𝑡})
160155, 156, 157, 159syl12anc 833 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = {𝑡})
161146ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
162 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
163161, 162sseldd 3918 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (V × V))
164163, 149syl 17 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
165160, 164eqtrd 2778 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
166154, 165impbida 797 . . . . . . 7 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
167166ralrimiva 3107 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
168137, 141, 167rspcedvd 3555 . . . . 5 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
169 reu6 3656 . . . . 5 (∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
170168, 169sylibr 233 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
171103, 6, 7, 106, 8, 109, 114, 116, 131, 170gsummptf1o 19479 . . 3 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))) = (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))))
172 fveq2 6756 . . . . . 6 (𝑡 = 𝑧 → (1st𝑡) = (1st𝑧))
173172cbvmptv 5183 . . . . 5 (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧))
17433cnveqd 5773 . . . . . . 7 (𝜑(𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
175174, 125eqtr2di 2796 . . . . . 6 (𝜑 → (𝐹 ∖ ({ 0 } × V)) = (𝐹 ↾ (𝐹 supp 0 )))
176175mpteq1d 5165 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
177173, 176syl5eq 2791 . . . 4 (𝜑 → (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
178177oveq2d 7271 . . 3 (𝜑 → (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
179102, 171, 1783eqtrd 2782 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
180 nfcv 2906 . . 3 𝑦(1st𝑧)
181 nfv 1918 . . 3 𝑥𝜑
182 vex 3426 . . . 4 𝑦 ∈ V
18374, 182op1std 7814 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
184 relcnv 6001 . . . 4 Rel (𝐹 ↾ (𝐹 supp 0 ))
185184a1i 11 . . 3 (𝜑 → Rel (𝐹 ↾ (𝐹 supp 0 )))
186 cnvfi 8924 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
187108, 186syl 17 . . 3 (𝜑(𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
188112adantr 480 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → ran 𝐹𝐵)
189184a1i 11 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → Rel (𝐹 ↾ (𝐹 supp 0 )))
190 simpr 484 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → 𝑧(𝐹 ↾ (𝐹 supp 0 )))
191 1stdm 7854 . . . . . . 7 ((Rel (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
192189, 190, 191syl2anc 583 . . . . . 6 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
193 df-rn 5591 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ↾ (𝐹 supp 0 ))
194192, 193eleqtrrdi 2850 . . . . 5 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran (𝐹 ↾ (𝐹 supp 0 )))
195111, 194sselid 3915 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran 𝐹)
196188, 195sseldd 3918 . . 3 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ 𝐵)
197180, 181, 6, 183, 185, 187, 8, 196gsummpt2d 31211 . 2 (𝜑 → (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))) = (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))))
198 df-ima 5593 . . . . . . 7 (𝐹 “ (𝐹 supp 0 )) = ran (𝐹 ↾ (𝐹 supp 0 ))
199 supppreima 30927 . . . . . . . . 9 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
20024, 12, 31, 199syl3anc 1369 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
201200imaeq2d 5958 . . . . . . 7 (𝜑 → (𝐹 “ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
202198, 201eqtr3id 2793 . . . . . 6 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
203 funimacnv 6499 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
20424, 203syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
205 difssd 4063 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹)
206 df-ss 3900 . . . . . . 7 ((ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹 ↔ ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
207205, 206sylib 217 . . . . . 6 (𝜑 → ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
208202, 204, 2073eqtrd 2782 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
209193, 208eqtr3id 2793 . . . 4 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
2108cmnmndd 19324 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
211210adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
212108adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
213 imafi2 30948 . . . . . . 7 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
214212, 186, 2133syl 18 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
215193, 113eqsstrrid 3966 . . . . . . 7 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
216215sselda 3917 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥𝐵)
217 gsumhashmul.x . . . . . . 7 · = (.g𝐺)
2186, 217gsumconst 19450 . . . . . 6 ((𝐺 ∈ Mnd ∧ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin ∧ 𝑥𝐵) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
219211, 214, 216, 218syl3anc 1369 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
220 cnvresima 6122 . . . . . . . 8 ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) = ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 ))
221209eleq2d 2824 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (ran 𝐹 ∖ { 0 })))
222221biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥 ∈ (ran 𝐹 ∖ { 0 }))
223222snssd 4739 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → {𝑥} ⊆ (ran 𝐹 ∖ { 0 }))
224 sspreima 6927 . . . . . . . . . . 11 ((Fun 𝐹 ∧ {𝑥} ⊆ (ran 𝐹 ∖ { 0 })) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
22524, 223, 224syl2an2r 681 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
226200adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
227225, 226sseqtrrd 3958 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ))
228 df-ss 3900 . . . . . . . . 9 ((𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ) ↔ ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
229227, 228sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
230220, 229eqtr2id 2792 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) = ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}))
231230fveq2d 6760 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (♯‘(𝐹 “ {𝑥})) = (♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})))
232231oveq1d 7270 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((♯‘(𝐹 “ {𝑥})) · 𝑥) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
233219, 232eqtr4d 2781 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘(𝐹 “ {𝑥})) · 𝑥))
234209, 233mpteq12dva 5159 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥))) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥)))
235234oveq2d 7271 . 2 (𝜑 → (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
236179, 197, 2353eqtrd 2782 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  Vcvv 3422  cdif 3880  cin 3882  wss 3883  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803   supp csupp 7948  Fincfn 8691   finSupp cfsupp 9058  chash 13972  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  CMndccmn 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303
This theorem is referenced by:  elrspunidl  31508
  Copyright terms: Public domain W3C validator