Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumhashmul Structured version   Visualization version   GIF version

Theorem gsumhashmul 33008
Description: Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumhashmul.b 𝐵 = (Base‘𝐺)
gsumhashmul.z 0 = (0g𝐺)
gsumhashmul.x · = (.g𝐺)
gsumhashmul.g (𝜑𝐺 ∈ CMnd)
gsumhashmul.f (𝜑𝐹:𝐴𝐵)
gsumhashmul.1 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumhashmul (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   · (𝑥)

Proof of Theorem gsumhashmul
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumhashmul.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2 suppssdm 8159 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
32, 1fssdm 6710 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
41, 3feqresmpt 6933 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥)))
54oveq2d 7406 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))))
6 gsumhashmul.b . . . . . 6 𝐵 = (Base‘𝐺)
7 gsumhashmul.z . . . . . 6 0 = (0g𝐺)
8 gsumhashmul.g . . . . . 6 (𝜑𝐺 ∈ CMnd)
9 gsumhashmul.1 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
10 relfsupp 9321 . . . . . . . . 9 Rel finSupp
1110brrelex1i 5697 . . . . . . . 8 (𝐹 finSupp 0𝐹 ∈ V)
129, 11syl 17 . . . . . . 7 (𝜑𝐹 ∈ V)
131ffnd 6692 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
1412, 13fndmexd 7883 . . . . . 6 (𝜑𝐴 ∈ V)
15 ssidd 3973 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
166, 7, 8, 14, 1, 15, 9gsumres 19850 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg 𝐹))
17 nfcv 2892 . . . . . 6 𝑥(𝐹‘(1st𝑧))
18 fveq2 6861 . . . . . 6 (𝑥 = (1st𝑧) → (𝐹𝑥) = (𝐹‘(1st𝑧)))
199fsuppimpd 9327 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
20 ssidd 3973 . . . . . 6 (𝜑𝐵𝐵)
211adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
223sselda 3949 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥𝐴)
2321, 22ffvelcdmd 7060 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹𝑥) ∈ 𝐵)
241ffund 6695 . . . . . . . . 9 (𝜑 → Fun 𝐹)
25 funrel 6536 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
26 reldif 5781 . . . . . . . . 9 (Rel 𝐹 → Rel (𝐹 ∖ (V × { 0 })))
2724, 25, 263syl 18 . . . . . . . 8 (𝜑 → Rel (𝐹 ∖ (V × { 0 })))
28 1stdm 8022 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
2927, 28sylan 580 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
307fvexi 6875 . . . . . . . . . . . 12 0 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
32 fressupp 32618 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3324, 12, 31, 32syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3433dmeqd 5872 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ∖ (V × { 0 })))
352a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ dom 𝐹)
36 ssdmres 5987 . . . . . . . . . 10 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3735, 36sylib 218 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3834, 37eqtr3d 2767 . . . . . . . 8 (𝜑 → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
3938adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
4029, 39eleqtrd 2831 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ (𝐹 supp 0 ))
4124funresd 6562 . . . . . . . . . . 11 (𝜑 → Fun (𝐹 ↾ (𝐹 supp 0 )))
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
4337eleq2d 2815 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (𝐹 supp 0 )))
4443biimpar 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
45 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ (𝐹 supp 0 ))
4645fvresd 6881 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
47 funopfvb 6918 . . . . . . . . . . 11 ((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 ))))
4847biimpa 476 . . . . . . . . . 10 (((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥)) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
4942, 44, 46, 48syl21anc 837 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
5033adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
5149, 50eleqtrd 2831 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ∖ (V × { 0 })))
52 eqeq2 2742 . . . . . . . . . . 11 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (𝑧 = 𝑣𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
5352bibi2d 342 . . . . . . . . . 10 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → ((𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5453ralbidv 3157 . . . . . . . . 9 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5554adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑣 = ⟨𝑥, (𝐹𝑥)⟩) → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
56 fvexd 6876 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (2nd𝑧) ∈ V)
5727ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → Rel (𝐹 ∖ (V × { 0 })))
58 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
59 1st2nd 8021 . . . . . . . . . . . . . . . . 17 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
6057, 58, 59syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
61 opeq1 4840 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6261adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6360, 62eqtr4d 2768 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (2nd𝑧)⟩)
64 difssd 4103 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ∖ (V × { 0 })) ⊆ 𝐹)
6564sselda 3949 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧𝐹)
6763, 66eqeltrrd 2830 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)
6863, 67jca 511 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
69 opeq2 4841 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, (2nd𝑧)⟩)
7069eqeq2d 2741 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, (2nd𝑧)⟩))
7169eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
7270, 71anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)))
7356, 68, 72spcedv 3567 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
74 vex 3454 . . . . . . . . . . . . . 14 𝑥 ∈ V
7574elsnres 5995 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐹 ↾ {𝑥}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
7673, 75sylibr 234 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ↾ {𝑥}))
7713ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝐹 Fn 𝐴)
7822ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑥𝐴)
79 fnressn 7133 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8077, 78, 79syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8176, 80eleqtrd 2831 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩})
82 elsni 4609 . . . . . . . . . . 11 (𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩} → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8381, 82syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
84 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8584fveq2d 6865 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → (1st𝑧) = (1st ‘⟨𝑥, (𝐹𝑥)⟩))
86 fvex 6874 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
8774, 86op1st 7979 . . . . . . . . . . 11 (1st ‘⟨𝑥, (𝐹𝑥)⟩) = 𝑥
8885, 87eqtr2di 2782 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑥 = (1st𝑧))
8983, 88impbida 800 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9089ralrimiva 3126 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9151, 55, 90rspcedvd 3593 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
92 reu6 3700 . . . . . . 7 (∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧) ↔ ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
9391, 92sylibr 234 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧))
9417, 6, 7, 18, 8, 19, 20, 23, 40, 93gsummptf1o 19900 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
955, 16, 943eqtr3d 2773 . . . 4 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
96 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
9796eldifad 3929 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
98 funfv1st2nd 8028 . . . . . . 7 ((Fun 𝐹𝑧𝐹) → (𝐹‘(1st𝑧)) = (2nd𝑧))
9924, 97, 98syl2an2r 685 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝐹‘(1st𝑧)) = (2nd𝑧))
10099mpteq2dva 5203 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧))) = (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧)))
101100oveq2d 7406 . . . 4 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
10295, 101eqtrd 2765 . . 3 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
103 nfcv 2892 . . . 4 𝑧(1st𝑡)
104 fvex 6874 . . . . 5 (2nd𝑡) ∈ V
105 fvex 6874 . . . . 5 (1st𝑡) ∈ V
106104, 105op2ndd 7982 . . . 4 (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ → (2nd𝑧) = (1st𝑡))
107 resfnfinfin 9295 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10813, 19, 107syl2anc 584 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10933, 108eqeltrrd 2830 . . . 4 (𝜑 → (𝐹 ∖ (V × { 0 })) ∈ Fin)
11033rneqd 5905 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = ran (𝐹 ∖ (V × { 0 })))
111 rnresss 5991 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ ran 𝐹
1121frnd 6699 . . . . . 6 (𝜑 → ran 𝐹𝐵)
113111, 112sstrid 3961 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
114110, 113eqsstrrd 3985 . . . 4 (𝜑 → ran (𝐹 ∖ (V × { 0 })) ⊆ 𝐵)
115 2ndrn 8023 . . . . 5 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
11627, 115sylan 580 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
117 relcnv 6078 . . . . . . . 8 Rel 𝐹
118 reldif 5781 . . . . . . . 8 (Rel 𝐹 → Rel (𝐹 ∖ ({ 0 } × V)))
119117, 118mp1i 13 . . . . . . 7 (𝜑 → Rel (𝐹 ∖ ({ 0 } × V)))
120 1st2nd 8021 . . . . . . 7 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
121119, 120sylan 580 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
122 cnvdif 6119 . . . . . . . . . 10 (𝐹 ∖ (V × { 0 })) = (𝐹(V × { 0 }))
123 cnvxp 6133 . . . . . . . . . . 11 (V × { 0 }) = ({ 0 } × V)
124123difeq2i 4089 . . . . . . . . . 10 (𝐹(V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
125122, 124eqtri 2753 . . . . . . . . 9 (𝐹 ∖ (V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
126125eqimss2i 4011 . . . . . . . 8 (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 }))
127126a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 })))
128127sselda 3949 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡(𝐹 ∖ (V × { 0 })))
129121, 128eqeltrrd 2830 . . . . 5 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
130105, 104opelcnv 5848 . . . . 5 (⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })) ↔ ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
131129, 130sylib 218 . . . 4 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
13227adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → Rel (𝐹 ∖ (V × { 0 })))
133 eqidd 2731 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} = {𝑧})
134 cnvf1olem 8092 . . . . . . . . 9 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → ( {𝑧} ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑧 = { {𝑧}}))
135134simpld 494 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
136132, 96, 133, 135syl12anc 836 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
137136, 125eleqtrdi 2839 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ ({ 0 } × V)))
138 eqeq2 2742 . . . . . . . . 9 (𝑢 = {𝑧} → (𝑡 = 𝑢𝑡 = {𝑧}))
139138bibi2d 342 . . . . . . . 8 (𝑢 = {𝑧} → ((𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
140139ralbidv 3157 . . . . . . 7 (𝑢 = {𝑧} → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
141140adantl 481 . . . . . 6 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑢 = {𝑧}) → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
142117, 118mp1i 13 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → Rel (𝐹 ∖ ({ 0 } × V)))
143 simplr 768 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
144 simpr 484 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
145 df-rel 5648 . . . . . . . . . . . . . 14 (Rel (𝐹 ∖ ({ 0 } × V)) ↔ (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
146119, 145sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
147146ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
148147, 143sseldd 3950 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (V × V))
149 2nd1st 8020 . . . . . . . . . . 11 (𝑡 ∈ (V × V) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
150148, 149syl 17 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
151144, 150eqtr4d 2768 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = {𝑡})
152 cnvf1olem 8092 . . . . . . . . . 10 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → (𝑧(𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 = {𝑧}))
153152simprd 495 . . . . . . . . 9 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → 𝑡 = {𝑧})
154142, 143, 151, 153syl12anc 836 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 = {𝑧})
15527ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → Rel (𝐹 ∖ (V × { 0 })))
15696ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
157 simpr 484 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 = {𝑧})
158 cnvf1olem 8092 . . . . . . . . . . 11 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → (𝑡(𝐹 ∖ (V × { 0 })) ∧ 𝑧 = {𝑡}))
159158simprd 495 . . . . . . . . . 10 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → 𝑧 = {𝑡})
160155, 156, 157, 159syl12anc 836 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = {𝑡})
161146ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
162 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
163161, 162sseldd 3950 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (V × V))
164163, 149syl 17 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
165160, 164eqtrd 2765 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
166154, 165impbida 800 . . . . . . 7 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
167166ralrimiva 3126 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
168137, 141, 167rspcedvd 3593 . . . . 5 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
169 reu6 3700 . . . . 5 (∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
170168, 169sylibr 234 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
171103, 6, 7, 106, 8, 109, 114, 116, 131, 170gsummptf1o 19900 . . 3 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))) = (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))))
172 fveq2 6861 . . . . . 6 (𝑡 = 𝑧 → (1st𝑡) = (1st𝑧))
173172cbvmptv 5214 . . . . 5 (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧))
17433cnveqd 5842 . . . . . . 7 (𝜑(𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
175174, 125eqtr2di 2782 . . . . . 6 (𝜑 → (𝐹 ∖ ({ 0 } × V)) = (𝐹 ↾ (𝐹 supp 0 )))
176175mpteq1d 5200 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
177173, 176eqtrid 2777 . . . 4 (𝜑 → (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
178177oveq2d 7406 . . 3 (𝜑 → (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
179102, 171, 1783eqtrd 2769 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
180 nfcv 2892 . . 3 𝑦(1st𝑧)
181 nfv 1914 . . 3 𝑥𝜑
182 vex 3454 . . . 4 𝑦 ∈ V
18374, 182op1std 7981 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
184 relcnv 6078 . . . 4 Rel (𝐹 ↾ (𝐹 supp 0 ))
185184a1i 11 . . 3 (𝜑 → Rel (𝐹 ↾ (𝐹 supp 0 )))
186 cnvfi 9146 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
187108, 186syl 17 . . 3 (𝜑(𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
188112adantr 480 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → ran 𝐹𝐵)
189184a1i 11 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → Rel (𝐹 ↾ (𝐹 supp 0 )))
190 simpr 484 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → 𝑧(𝐹 ↾ (𝐹 supp 0 )))
191 1stdm 8022 . . . . . . 7 ((Rel (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
192189, 190, 191syl2anc 584 . . . . . 6 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
193 df-rn 5652 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ↾ (𝐹 supp 0 ))
194192, 193eleqtrrdi 2840 . . . . 5 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran (𝐹 ↾ (𝐹 supp 0 )))
195111, 194sselid 3947 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran 𝐹)
196188, 195sseldd 3950 . . 3 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ 𝐵)
197180, 181, 6, 183, 185, 187, 8, 196gsummpt2d 32996 . 2 (𝜑 → (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))) = (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))))
198 df-ima 5654 . . . . . . 7 (𝐹 “ (𝐹 supp 0 )) = ran (𝐹 ↾ (𝐹 supp 0 ))
199 supppreima 32621 . . . . . . . . 9 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
20024, 12, 31, 199syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
201200imaeq2d 6034 . . . . . . 7 (𝜑 → (𝐹 “ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
202198, 201eqtr3id 2779 . . . . . 6 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
203 funimacnv 6600 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
20424, 203syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
205 difssd 4103 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹)
206 dfss2 3935 . . . . . . 7 ((ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹 ↔ ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
207205, 206sylib 218 . . . . . 6 (𝜑 → ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
208202, 204, 2073eqtrd 2769 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
209193, 208eqtr3id 2779 . . . 4 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
2108cmnmndd 19741 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
211210adantr 480 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
212108adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
213 imafi2 32642 . . . . . . 7 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
214212, 186, 2133syl 18 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
215193, 113eqsstrrid 3989 . . . . . . 7 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
216215sselda 3949 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥𝐵)
217 gsumhashmul.x . . . . . . 7 · = (.g𝐺)
2186, 217gsumconst 19871 . . . . . 6 ((𝐺 ∈ Mnd ∧ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin ∧ 𝑥𝐵) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
219211, 214, 216, 218syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
220 cnvresima 6206 . . . . . . . 8 ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) = ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 ))
221209eleq2d 2815 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (ran 𝐹 ∖ { 0 })))
222221biimpa 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥 ∈ (ran 𝐹 ∖ { 0 }))
223222snssd 4776 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → {𝑥} ⊆ (ran 𝐹 ∖ { 0 }))
224 sspreima 7043 . . . . . . . . . . 11 ((Fun 𝐹 ∧ {𝑥} ⊆ (ran 𝐹 ∖ { 0 })) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
22524, 223, 224syl2an2r 685 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
226200adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
227225, 226sseqtrrd 3987 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ))
228 dfss2 3935 . . . . . . . . 9 ((𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ) ↔ ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
229227, 228sylib 218 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
230220, 229eqtr2id 2778 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) = ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}))
231230fveq2d 6865 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (♯‘(𝐹 “ {𝑥})) = (♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})))
232231oveq1d 7405 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((♯‘(𝐹 “ {𝑥})) · 𝑥) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
233219, 232eqtr4d 2768 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘(𝐹 “ {𝑥})) · 𝑥))
234209, 233mpteq12dva 5196 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥))) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥)))
235234oveq2d 7406 . 2 (𝜑 → (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
236179, 197, 2353eqtrd 2769 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  Vcvv 3450  cdif 3914  cin 3916  wss 3917  {csn 4592  cop 4598   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970   supp csupp 8142  Fincfn 8921   finSupp cfsupp 9319  chash 14302  Basecbs 17186  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  CMndccmn 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719
This theorem is referenced by:  elrspunidl  33406
  Copyright terms: Public domain W3C validator