Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumhashmul Structured version   Visualization version   GIF version

Theorem gsumhashmul 32881
Description: Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
gsumhashmul.b 𝐵 = (Base‘𝐺)
gsumhashmul.z 0 = (0g𝐺)
gsumhashmul.x · = (.g𝐺)
gsumhashmul.g (𝜑𝐺 ∈ CMnd)
gsumhashmul.f (𝜑𝐹:𝐴𝐵)
gsumhashmul.1 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumhashmul (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   · (𝑥)

Proof of Theorem gsumhashmul
Dummy variables 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumhashmul.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2 suppssdm 8182 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
32, 1fssdm 6742 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
41, 3feqresmpt 6967 . . . . . 6 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥)))
54oveq2d 7435 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))))
6 gsumhashmul.b . . . . . 6 𝐵 = (Base‘𝐺)
7 gsumhashmul.z . . . . . 6 0 = (0g𝐺)
8 gsumhashmul.g . . . . . 6 (𝜑𝐺 ∈ CMnd)
9 gsumhashmul.1 . . . . . . . 8 (𝜑𝐹 finSupp 0 )
10 relfsupp 9394 . . . . . . . . 9 Rel finSupp
1110brrelex1i 5734 . . . . . . . 8 (𝐹 finSupp 0𝐹 ∈ V)
129, 11syl 17 . . . . . . 7 (𝜑𝐹 ∈ V)
131ffnd 6724 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
1412, 13fndmexd 7912 . . . . . 6 (𝜑𝐴 ∈ V)
15 ssidd 4000 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
166, 7, 8, 14, 1, 15, 9gsumres 19897 . . . . 5 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐹 supp 0 ))) = (𝐺 Σg 𝐹))
17 nfcv 2891 . . . . . 6 𝑥(𝐹‘(1st𝑧))
18 fveq2 6896 . . . . . 6 (𝑥 = (1st𝑧) → (𝐹𝑥) = (𝐹‘(1st𝑧)))
199fsuppimpd 9400 . . . . . 6 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
20 ssidd 4000 . . . . . 6 (𝜑𝐵𝐵)
211adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝐹:𝐴𝐵)
223sselda 3976 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥𝐴)
2321, 22ffvelcdmd 7094 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹𝑥) ∈ 𝐵)
241ffund 6727 . . . . . . . . 9 (𝜑 → Fun 𝐹)
25 funrel 6571 . . . . . . . . 9 (Fun 𝐹 → Rel 𝐹)
26 reldif 5817 . . . . . . . . 9 (Rel 𝐹 → Rel (𝐹 ∖ (V × { 0 })))
2724, 25, 263syl 18 . . . . . . . 8 (𝜑 → Rel (𝐹 ∖ (V × { 0 })))
28 1stdm 8045 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
2927, 28sylan 578 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ dom (𝐹 ∖ (V × { 0 })))
307fvexi 6910 . . . . . . . . . . . 12 0 ∈ V
3130a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
32 fressupp 32570 . . . . . . . . . . 11 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3324, 12, 31, 32syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
3433dmeqd 5908 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ∖ (V × { 0 })))
352a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ dom 𝐹)
36 ssdmres 6018 . . . . . . . . . 10 ((𝐹 supp 0 ) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3735, 36sylib 217 . . . . . . . . 9 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 supp 0 ))
3834, 37eqtr3d 2767 . . . . . . . 8 (𝜑 → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
3938adantr 479 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → dom (𝐹 ∖ (V × { 0 })) = (𝐹 supp 0 ))
4029, 39eleqtrd 2827 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (1st𝑧) ∈ (𝐹 supp 0 ))
4124funresd 6597 . . . . . . . . . . 11 (𝜑 → Fun (𝐹 ↾ (𝐹 supp 0 )))
4241adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → Fun (𝐹 ↾ (𝐹 supp 0 )))
4337eleq2d 2811 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (𝐹 supp 0 )))
4443biimpar 476 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
45 simpr 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → 𝑥 ∈ (𝐹 supp 0 ))
4645fvresd 6916 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥))
47 funopfvb 6952 . . . . . . . . . . 11 ((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 ))))
4847biimpa 475 . . . . . . . . . 10 (((Fun (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) ∧ ((𝐹 ↾ (𝐹 supp 0 ))‘𝑥) = (𝐹𝑥)) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
4942, 44, 46, 48syl21anc 836 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ↾ (𝐹 supp 0 )))
5033adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
5149, 50eleqtrd 2827 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ⟨𝑥, (𝐹𝑥)⟩ ∈ (𝐹 ∖ (V × { 0 })))
52 eqeq2 2737 . . . . . . . . . . 11 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (𝑧 = 𝑣𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
5352bibi2d 341 . . . . . . . . . 10 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → ((𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5453ralbidv 3167 . . . . . . . . 9 (𝑣 = ⟨𝑥, (𝐹𝑥)⟩ → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
5554adantl 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑣 = ⟨𝑥, (𝐹𝑥)⟩) → (∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣) ↔ ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)))
56 fvexd 6911 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (2nd𝑧) ∈ V)
5727ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → Rel (𝐹 ∖ (V × { 0 })))
58 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
59 1st2nd 8044 . . . . . . . . . . . . . . . . 17 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
6057, 58, 59syl2anc 582 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
61 opeq1 4875 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑧) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6261adantl 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ = ⟨(1st𝑧), (2nd𝑧)⟩)
6360, 62eqtr4d 2768 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (2nd𝑧)⟩)
64 difssd 4129 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → (𝐹 ∖ (V × { 0 })) ⊆ 𝐹)
6564sselda 3976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
6665adantr 479 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧𝐹)
6763, 66eqeltrrd 2826 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)
6863, 67jca 510 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
69 opeq2 4876 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd𝑧) → ⟨𝑥, 𝑦⟩ = ⟨𝑥, (2nd𝑧)⟩)
7069eqeq2d 2736 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝑧 = ⟨𝑥, (2nd𝑧)⟩))
7169eleq1d 2810 . . . . . . . . . . . . . . 15 (𝑦 = (2nd𝑧) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹))
7270, 71anbi12d 630 . . . . . . . . . . . . . 14 (𝑦 = (2nd𝑧) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (𝑧 = ⟨𝑥, (2nd𝑧)⟩ ∧ ⟨𝑥, (2nd𝑧)⟩ ∈ 𝐹)))
7356, 68, 72spcedv 3582 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
74 vex 3465 . . . . . . . . . . . . . 14 𝑥 ∈ V
7574elsnres 6026 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐹 ↾ {𝑥}) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
7673, 75sylibr 233 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ (𝐹 ↾ {𝑥}))
7713ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝐹 Fn 𝐴)
7822ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑥𝐴)
79 fnressn 7167 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8077, 78, 79syl2anc 582 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → (𝐹 ↾ {𝑥}) = {⟨𝑥, (𝐹𝑥)⟩})
8176, 80eleqtrd 2827 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩})
82 elsni 4647 . . . . . . . . . . 11 (𝑧 ∈ {⟨𝑥, (𝐹𝑥)⟩} → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8381, 82syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑥 = (1st𝑧)) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
84 simpr 483 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑧 = ⟨𝑥, (𝐹𝑥)⟩)
8584fveq2d 6900 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → (1st𝑧) = (1st ‘⟨𝑥, (𝐹𝑥)⟩))
86 fvex 6909 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
8774, 86op1st 8002 . . . . . . . . . . 11 (1st ‘⟨𝑥, (𝐹𝑥)⟩) = 𝑥
8885, 87eqtr2di 2782 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩) → 𝑥 = (1st𝑧))
8983, 88impbida 799 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐹 supp 0 )) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9089ralrimiva 3135 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = ⟨𝑥, (𝐹𝑥)⟩))
9151, 55, 90rspcedvd 3608 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
92 reu6 3718 . . . . . . 7 (∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧) ↔ ∃𝑣 ∈ (𝐹 ∖ (V × { 0 }))∀𝑧 ∈ (𝐹 ∖ (V × { 0 }))(𝑥 = (1st𝑧) ↔ 𝑧 = 𝑣))
9391, 92sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 supp 0 )) → ∃!𝑧 ∈ (𝐹 ∖ (V × { 0 }))𝑥 = (1st𝑧))
9417, 6, 7, 18, 8, 19, 20, 23, 40, 93gsummptf1o 19947 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝐹 supp 0 ) ↦ (𝐹𝑥))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
955, 16, 943eqtr3d 2773 . . . 4 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))))
96 simpr 483 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
9796eldifad 3956 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → 𝑧𝐹)
98 funfv1st2nd 8051 . . . . . . 7 ((Fun 𝐹𝑧𝐹) → (𝐹‘(1st𝑧)) = (2nd𝑧))
9924, 97, 98syl2an2r 683 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (𝐹‘(1st𝑧)) = (2nd𝑧))
10099mpteq2dva 5249 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧))) = (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧)))
101100oveq2d 7435 . . . 4 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (𝐹‘(1st𝑧)))) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
10295, 101eqtrd 2765 . . 3 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))))
103 nfcv 2891 . . . 4 𝑧(1st𝑡)
104 fvex 6909 . . . . 5 (2nd𝑡) ∈ V
105 fvex 6909 . . . . 5 (1st𝑡) ∈ V
106104, 105op2ndd 8005 . . . 4 (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ → (2nd𝑧) = (1st𝑡))
107 resfnfinfin 9363 . . . . . 6 ((𝐹 Fn 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10813, 19, 107syl2anc 582 . . . . 5 (𝜑 → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
10933, 108eqeltrrd 2826 . . . 4 (𝜑 → (𝐹 ∖ (V × { 0 })) ∈ Fin)
11033rneqd 5940 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = ran (𝐹 ∖ (V × { 0 })))
111 rnresss 6022 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ ran 𝐹
1121frnd 6731 . . . . . 6 (𝜑 → ran 𝐹𝐵)
113111, 112sstrid 3988 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
114110, 113eqsstrrd 4016 . . . 4 (𝜑 → ran (𝐹 ∖ (V × { 0 })) ⊆ 𝐵)
115 2ndrn 8046 . . . . 5 ((Rel (𝐹 ∖ (V × { 0 })) ∧ 𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
11627, 115sylan 578 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → (2nd𝑧) ∈ ran (𝐹 ∖ (V × { 0 })))
117 relcnv 6109 . . . . . . . 8 Rel 𝐹
118 reldif 5817 . . . . . . . 8 (Rel 𝐹 → Rel (𝐹 ∖ ({ 0 } × V)))
119117, 118mp1i 13 . . . . . . 7 (𝜑 → Rel (𝐹 ∖ ({ 0 } × V)))
120 1st2nd 8044 . . . . . . 7 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
121119, 120sylan 578 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡 = ⟨(1st𝑡), (2nd𝑡)⟩)
122 cnvdif 6150 . . . . . . . . . 10 (𝐹 ∖ (V × { 0 })) = (𝐹(V × { 0 }))
123 cnvxp 6163 . . . . . . . . . . 11 (V × { 0 }) = ({ 0 } × V)
124123difeq2i 4115 . . . . . . . . . 10 (𝐹(V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
125122, 124eqtri 2753 . . . . . . . . 9 (𝐹 ∖ (V × { 0 })) = (𝐹 ∖ ({ 0 } × V))
126125eqimss2i 4038 . . . . . . . 8 (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 }))
127126a1i 11 . . . . . . 7 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (𝐹 ∖ (V × { 0 })))
128127sselda 3976 . . . . . 6 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → 𝑡(𝐹 ∖ (V × { 0 })))
129121, 128eqeltrrd 2826 . . . . 5 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
130105, 104opelcnv 5884 . . . . 5 (⟨(1st𝑡), (2nd𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })) ↔ ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
131129, 130sylib 217 . . . 4 ((𝜑𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → ⟨(2nd𝑡), (1st𝑡)⟩ ∈ (𝐹 ∖ (V × { 0 })))
13227adantr 479 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → Rel (𝐹 ∖ (V × { 0 })))
133 eqidd 2726 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} = {𝑧})
134 cnvf1olem 8115 . . . . . . . . 9 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → ( {𝑧} ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑧 = { {𝑧}}))
135134simpld 493 . . . . . . . 8 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ {𝑧} = {𝑧})) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
136132, 96, 133, 135syl12anc 835 . . . . . . 7 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ (V × { 0 })))
137136, 125eleqtrdi 2835 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → {𝑧} ∈ (𝐹 ∖ ({ 0 } × V)))
138 eqeq2 2737 . . . . . . . . 9 (𝑢 = {𝑧} → (𝑡 = 𝑢𝑡 = {𝑧}))
139138bibi2d 341 . . . . . . . 8 (𝑢 = {𝑧} → ((𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
140139ralbidv 3167 . . . . . . 7 (𝑢 = {𝑧} → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
141140adantl 480 . . . . . 6 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑢 = {𝑧}) → (∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢) ↔ ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧})))
142117, 118mp1i 13 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → Rel (𝐹 ∖ ({ 0 } × V)))
143 simplr 767 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
144 simpr 483 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
145 df-rel 5685 . . . . . . . . . . . . . 14 (Rel (𝐹 ∖ ({ 0 } × V)) ↔ (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
146119, 145sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
147146ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
148147, 143sseldd 3977 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 ∈ (V × V))
149 2nd1st 8043 . . . . . . . . . . 11 (𝑡 ∈ (V × V) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
150148, 149syl 17 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
151144, 150eqtr4d 2768 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑧 = {𝑡})
152 cnvf1olem 8115 . . . . . . . . . 10 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → (𝑧(𝐹 ∖ ({ 0 } × V)) ∧ 𝑡 = {𝑧}))
153152simprd 494 . . . . . . . . 9 ((Rel (𝐹 ∖ ({ 0 } × V)) ∧ (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ∧ 𝑧 = {𝑡})) → 𝑡 = {𝑧})
154142, 143, 151, 153syl12anc 835 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩) → 𝑡 = {𝑧})
15527ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → Rel (𝐹 ∖ (V × { 0 })))
15696ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 ∈ (𝐹 ∖ (V × { 0 })))
157 simpr 483 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 = {𝑧})
158 cnvf1olem 8115 . . . . . . . . . . 11 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → (𝑡(𝐹 ∖ (V × { 0 })) ∧ 𝑧 = {𝑡}))
159158simprd 494 . . . . . . . . . 10 ((Rel (𝐹 ∖ (V × { 0 })) ∧ (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ∧ 𝑡 = {𝑧})) → 𝑧 = {𝑡})
160155, 156, 157, 159syl12anc 835 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = {𝑡})
161146ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → (𝐹 ∖ ({ 0 } × V)) ⊆ (V × V))
162 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (𝐹 ∖ ({ 0 } × V)))
163161, 162sseldd 3977 . . . . . . . . . 10 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑡 ∈ (V × V))
164163, 149syl 17 . . . . . . . . 9 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → {𝑡} = ⟨(2nd𝑡), (1st𝑡)⟩)
165160, 164eqtrd 2765 . . . . . . . 8 ((((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) ∧ 𝑡 = {𝑧}) → 𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
166154, 165impbida 799 . . . . . . 7 (((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) ∧ 𝑡 ∈ (𝐹 ∖ ({ 0 } × V))) → (𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
167166ralrimiva 3135 . . . . . 6 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = {𝑧}))
168137, 141, 167rspcedvd 3608 . . . . 5 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
169 reu6 3718 . . . . 5 (∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ ∃𝑢 ∈ (𝐹 ∖ ({ 0 } × V))∀𝑡 ∈ (𝐹 ∖ ({ 0 } × V))(𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩ ↔ 𝑡 = 𝑢))
170168, 169sylibr 233 . . . 4 ((𝜑𝑧 ∈ (𝐹 ∖ (V × { 0 }))) → ∃!𝑡 ∈ (𝐹 ∖ ({ 0 } × V))𝑧 = ⟨(2nd𝑡), (1st𝑡)⟩)
171103, 6, 7, 106, 8, 109, 114, 116, 131, 170gsummptf1o 19947 . . 3 (𝜑 → (𝐺 Σg (𝑧 ∈ (𝐹 ∖ (V × { 0 })) ↦ (2nd𝑧))) = (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))))
172 fveq2 6896 . . . . . 6 (𝑡 = 𝑧 → (1st𝑡) = (1st𝑧))
173172cbvmptv 5262 . . . . 5 (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧))
17433cnveqd 5878 . . . . . . 7 (𝜑(𝐹 ↾ (𝐹 supp 0 )) = (𝐹 ∖ (V × { 0 })))
175174, 125eqtr2di 2782 . . . . . 6 (𝜑 → (𝐹 ∖ ({ 0 } × V)) = (𝐹 ↾ (𝐹 supp 0 )))
176175mpteq1d 5244 . . . . 5 (𝜑 → (𝑧 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑧)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
177173, 176eqtrid 2777 . . . 4 (𝜑 → (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡)) = (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧)))
178177oveq2d 7435 . . 3 (𝜑 → (𝐺 Σg (𝑡 ∈ (𝐹 ∖ ({ 0 } × V)) ↦ (1st𝑡))) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
179102, 171, 1783eqtrd 2769 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))))
180 nfcv 2891 . . 3 𝑦(1st𝑧)
181 nfv 1909 . . 3 𝑥𝜑
182 vex 3465 . . . 4 𝑦 ∈ V
18374, 182op1std 8004 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
184 relcnv 6109 . . . 4 Rel (𝐹 ↾ (𝐹 supp 0 ))
185184a1i 11 . . 3 (𝜑 → Rel (𝐹 ↾ (𝐹 supp 0 )))
186 cnvfi 9208 . . . 4 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
187108, 186syl 17 . . 3 (𝜑(𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
188112adantr 479 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → ran 𝐹𝐵)
189184a1i 11 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → Rel (𝐹 ↾ (𝐹 supp 0 )))
190 simpr 483 . . . . . . 7 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → 𝑧(𝐹 ↾ (𝐹 supp 0 )))
191 1stdm 8045 . . . . . . 7 ((Rel (𝐹 ↾ (𝐹 supp 0 )) ∧ 𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
192189, 190, 191syl2anc 582 . . . . . 6 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ dom (𝐹 ↾ (𝐹 supp 0 )))
193 df-rn 5689 . . . . . 6 ran (𝐹 ↾ (𝐹 supp 0 )) = dom (𝐹 ↾ (𝐹 supp 0 ))
194192, 193eleqtrrdi 2836 . . . . 5 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran (𝐹 ↾ (𝐹 supp 0 )))
195111, 194sselid 3974 . . . 4 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ ran 𝐹)
196188, 195sseldd 3977 . . 3 ((𝜑𝑧(𝐹 ↾ (𝐹 supp 0 ))) → (1st𝑧) ∈ 𝐵)
197180, 181, 6, 183, 185, 187, 8, 196gsummpt2d 32874 . 2 (𝜑 → (𝐺 Σg (𝑧(𝐹 ↾ (𝐹 supp 0 )) ↦ (1st𝑧))) = (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))))
198 df-ima 5691 . . . . . . 7 (𝐹 “ (𝐹 supp 0 )) = ran (𝐹 ↾ (𝐹 supp 0 ))
199 supppreima 32573 . . . . . . . . 9 ((Fun 𝐹𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
20024, 12, 31, 199syl3anc 1368 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
201200imaeq2d 6064 . . . . . . 7 (𝜑 → (𝐹 “ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
202198, 201eqtr3id 2779 . . . . . 6 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))))
203 funimacnv 6635 . . . . . . 7 (Fun 𝐹 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
20424, 203syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹 “ (ran 𝐹 ∖ { 0 }))) = ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹))
205 difssd 4129 . . . . . . 7 (𝜑 → (ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹)
206 dfss2 3962 . . . . . . 7 ((ran 𝐹 ∖ { 0 }) ⊆ ran 𝐹 ↔ ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
207205, 206sylib 217 . . . . . 6 (𝜑 → ((ran 𝐹 ∖ { 0 }) ∩ ran 𝐹) = (ran 𝐹 ∖ { 0 }))
208202, 204, 2073eqtrd 2769 . . . . 5 (𝜑 → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
209193, 208eqtr3id 2779 . . . 4 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 }))
2108cmnmndd 19788 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
211210adantr 479 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
212108adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 ↾ (𝐹 supp 0 )) ∈ Fin)
213 imafi2 32595 . . . . . . 7 ((𝐹 ↾ (𝐹 supp 0 )) ∈ Fin → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
214212, 186, 2133syl 18 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin)
215193, 113eqsstrrid 4026 . . . . . . 7 (𝜑 → dom (𝐹 ↾ (𝐹 supp 0 )) ⊆ 𝐵)
216215sselda 3976 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥𝐵)
217 gsumhashmul.x . . . . . . 7 · = (.g𝐺)
2186, 217gsumconst 19918 . . . . . 6 ((𝐺 ∈ Mnd ∧ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ∈ Fin ∧ 𝑥𝐵) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
219211, 214, 216, 218syl3anc 1368 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
220 cnvresima 6236 . . . . . . . 8 ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) = ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 ))
221209eleq2d 2811 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↔ 𝑥 ∈ (ran 𝐹 ∖ { 0 })))
222221biimpa 475 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → 𝑥 ∈ (ran 𝐹 ∖ { 0 }))
223222snssd 4814 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → {𝑥} ⊆ (ran 𝐹 ∖ { 0 }))
224 sspreima 7076 . . . . . . . . . . 11 ((Fun 𝐹 ∧ {𝑥} ⊆ (ran 𝐹 ∖ { 0 })) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
22524, 223, 224syl2an2r 683 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 “ (ran 𝐹 ∖ { 0 })))
226200adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 supp 0 ) = (𝐹 “ (ran 𝐹 ∖ { 0 })))
227225, 226sseqtrrd 4018 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ))
228 dfss2 3962 . . . . . . . . 9 ((𝐹 “ {𝑥}) ⊆ (𝐹 supp 0 ) ↔ ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
229227, 228sylib 217 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((𝐹 “ {𝑥}) ∩ (𝐹 supp 0 )) = (𝐹 “ {𝑥}))
230220, 229eqtr2id 2778 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐹 “ {𝑥}) = ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}))
231230fveq2d 6900 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (♯‘(𝐹 “ {𝑥})) = (♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})))
232231oveq1d 7434 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → ((♯‘(𝐹 “ {𝑥})) · 𝑥) = ((♯‘((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥})) · 𝑥))
233219, 232eqtr4d 2768 . . . 4 ((𝜑𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 ))) → (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)) = ((♯‘(𝐹 “ {𝑥})) · 𝑥))
234209, 233mpteq12dva 5238 . . 3 (𝜑 → (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥))) = (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥)))
235234oveq2d 7435 . 2 (𝜑 → (𝐺 Σg (𝑥 ∈ dom (𝐹 ↾ (𝐹 supp 0 )) ↦ (𝐺 Σg (𝑦 ∈ ((𝐹 ↾ (𝐹 supp 0 )) “ {𝑥}) ↦ 𝑥)))) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
236179, 197, 2353eqtrd 2769 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ (ran 𝐹 ∖ { 0 }) ↦ ((♯‘(𝐹 “ {𝑥})) · 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3050  wrex 3059  ∃!wreu 3361  Vcvv 3461  cdif 3941  cin 3943  wss 3944  {csn 4630  cop 4636   cuni 4909   class class class wbr 5149  cmpt 5232   × cxp 5676  ccnv 5677  dom cdm 5678  ran crn 5679  cres 5680  cima 5681  Rel wrel 5683  Fun wfun 6543   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993   supp csupp 8165  Fincfn 8964   finSupp cfsupp 9392  chash 14333  Basecbs 17199  0gc0g 17440   Σg cgsu 17441  Mndcmnd 18713  .gcmg 19047  CMndccmn 19764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9393  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14008  df-hash 14334  df-sets 17152  df-slot 17170  df-ndx 17182  df-base 17200  df-ress 17229  df-plusg 17265  df-0g 17442  df-gsum 17443  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18619  df-sgrp 18698  df-mnd 18714  df-submnd 18760  df-mulg 19048  df-cntz 19297  df-cmn 19766
This theorem is referenced by:  elrspunidl  33261
  Copyright terms: Public domain W3C validator