MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rel0 Structured version   Visualization version   GIF version

Theorem rel0 5753
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 4359 . 2 ∅ ⊆ (V × V)
2 df-rel 5638 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 231 1 Rel ∅
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3444  wss 3911  c0 4292   × cxp 5629  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3914  df-ss 3928  df-nul 4293  df-rel 5638
This theorem is referenced by:  relsnb  5756  reldm0  5881  cnveq0  6158  co02  6221  co01  6222  tpos0  8212  0we1  8447  0er  8686  canthwe  10580  relexpreld  14982  disjALTV0  38719  dibvalrel  41130  dicvalrelN  41152  dihvalrel  41246  reldmprcof1  49343  reldmprcof2  49344  reldmlan2  49579  reldmran2  49580  rellan  49585  relran  49586
  Copyright terms: Public domain W3C validator