MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rel0 Structured version   Visualization version   GIF version

Theorem rel0 5742
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 4351 . 2 ∅ ⊆ (V × V)
2 df-rel 5626 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 231 1 Rel ∅
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  wss 3903  c0 4284   × cxp 5617  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3906  df-ss 3920  df-nul 4285  df-rel 5626
This theorem is referenced by:  relsnb  5745  reldm0  5870  cnveq0  6146  co02  6209  co01  6210  tpos0  8189  0we1  8424  0er  8663  canthwe  10545  relexpreld  14947  disjALTV0  38732  dibvalrel  41142  dicvalrelN  41164  dihvalrel  41258  reldmprcof1  49366  reldmprcof2  49367  reldmlan2  49602  reldmran2  49603  rellan  49608  relran  49609
  Copyright terms: Public domain W3C validator