| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
| Ref | Expression |
|---|---|
| rel0 | ⊢ Rel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4359 | . 2 ⊢ ∅ ⊆ (V × V) | |
| 2 | df-rel 5638 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ⊆ wss 3911 ∅c0 4292 × cxp 5629 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-ss 3928 df-nul 4293 df-rel 5638 |
| This theorem is referenced by: relsnb 5756 reldm0 5881 cnveq0 6158 co02 6221 co01 6222 tpos0 8212 0we1 8447 0er 8686 canthwe 10580 relexpreld 14982 disjALTV0 38719 dibvalrel 41130 dicvalrelN 41152 dihvalrel 41246 reldmprcof1 49343 reldmprcof2 49344 reldmlan2 49579 reldmran2 49580 rellan 49585 relran 49586 |
| Copyright terms: Public domain | W3C validator |