MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rel0 Structured version   Visualization version   GIF version

Theorem rel0 5778
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 4375 . 2 ∅ ⊆ (V × V)
2 df-rel 5661 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 231 1 Rel ∅
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3459  wss 3926  c0 4308   × cxp 5652  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-dif 3929  df-ss 3943  df-nul 4309  df-rel 5661
This theorem is referenced by:  relsnb  5781  reldm0  5907  cnveq0  6186  co02  6249  co01  6250  tpos0  8255  0we1  8518  0er  8757  canthwe  10665  relexpreld  15059  disjALTV0  38772  dibvalrel  41182  dicvalrelN  41204  dihvalrel  41298  reldmprcof1  49291  reldmprcof2  49292  reldmlan2  49492  reldmran2  49493  rellan  49498  relran  49499
  Copyright terms: Public domain W3C validator