| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
| Ref | Expression |
|---|---|
| rel0 | ⊢ Rel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . 2 ⊢ ∅ ⊆ (V × V) | |
| 2 | df-rel 5661 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ⊆ wss 3926 ∅c0 4308 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-dif 3929 df-ss 3943 df-nul 4309 df-rel 5661 |
| This theorem is referenced by: relsnb 5781 reldm0 5907 cnveq0 6186 co02 6249 co01 6250 tpos0 8255 0we1 8518 0er 8757 canthwe 10665 relexpreld 15059 disjALTV0 38772 dibvalrel 41182 dicvalrelN 41204 dihvalrel 41298 reldmprcof1 49291 reldmprcof2 49292 reldmlan2 49492 reldmran2 49493 rellan 49498 relran 49499 |
| Copyright terms: Public domain | W3C validator |