| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
| Ref | Expression |
|---|---|
| rel0 | ⊢ Rel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4351 | . 2 ⊢ ∅ ⊆ (V × V) | |
| 2 | df-rel 5626 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3903 ∅c0 4284 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3906 df-ss 3920 df-nul 4285 df-rel 5626 |
| This theorem is referenced by: relsnb 5745 reldm0 5870 cnveq0 6146 co02 6209 co01 6210 tpos0 8189 0we1 8424 0er 8663 canthwe 10545 relexpreld 14947 disjALTV0 38732 dibvalrel 41142 dicvalrelN 41164 dihvalrel 41258 reldmprcof1 49366 reldmprcof2 49367 reldmlan2 49602 reldmran2 49603 rellan 49608 relran 49609 |
| Copyright terms: Public domain | W3C validator |