MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rel0 Structured version   Visualization version   GIF version

Theorem rel0 5709
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 4330 . 2 ∅ ⊆ (V × V)
2 df-rel 5596 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 230 1 Rel ∅
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3432  wss 3887  c0 4256   × cxp 5587  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-rel 5596
This theorem is referenced by:  relsnb  5712  reldm0  5837  cnveq0  6100  co02  6164  co01  6165  tpos0  8072  0we1  8336  0er  8535  canthwe  10407  relexpreld  14751  disjALTV0  36862  dibvalrel  39177  dicvalrelN  39199  dihvalrel  39293
  Copyright terms: Public domain W3C validator