| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
| Ref | Expression |
|---|---|
| rel0 | ⊢ Rel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . 2 ⊢ ∅ ⊆ (V × V) | |
| 2 | df-rel 5621 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3897 ∅c0 4280 × cxp 5612 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-dif 3900 df-ss 3914 df-nul 4281 df-rel 5621 |
| This theorem is referenced by: relsnb 5741 reldm0 5867 cnveq0 6144 co02 6208 co01 6209 tpos0 8186 0we1 8421 0er 8660 canthwe 10542 relexpreld 14947 disjALTV0 38800 dibvalrel 41210 dicvalrelN 41232 dihvalrel 41326 reldmprcof1 49421 reldmprcof2 49422 reldmlan2 49657 reldmran2 49658 rellan 49663 relran 49664 |
| Copyright terms: Public domain | W3C validator |