![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version |
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
Ref | Expression |
---|---|
rel0 | ⊢ Rel ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4230 | . 2 ⊢ ∅ ⊆ (V × V) | |
2 | df-rel 5410 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
3 | 1, 2 | mpbir 223 | 1 ⊢ Rel ∅ |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3408 ⊆ wss 3822 ∅c0 4172 × cxp 5401 Rel wrel 5408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-dif 3825 df-in 3829 df-ss 3836 df-nul 4173 df-rel 5410 |
This theorem is referenced by: relsnb 5521 reldm0 5638 cnveq0 5890 co02 5949 co01 5950 tpos0 7723 0we1 7931 0er 8124 canthwe 9869 disjALTV0 35466 dibvalrel 37781 dicvalrelN 37803 dihvalrel 37897 |
Copyright terms: Public domain | W3C validator |