Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version |
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
Ref | Expression |
---|---|
rel0 | ⊢ Rel ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4327 | . 2 ⊢ ∅ ⊆ (V × V) | |
2 | df-rel 5587 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ Rel ∅ |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ⊆ wss 3883 ∅c0 4253 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-rel 5587 |
This theorem is referenced by: relsnb 5701 reldm0 5826 cnveq0 6089 co02 6153 co01 6154 tpos0 8043 0we1 8298 0er 8493 canthwe 10338 relexpreld 14679 disjALTV0 36789 dibvalrel 39104 dicvalrelN 39126 dihvalrel 39220 |
Copyright terms: Public domain | W3C validator |