Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version |
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
Ref | Expression |
---|---|
rel0 | ⊢ Rel ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . 2 ⊢ ∅ ⊆ (V × V) | |
2 | df-rel 5596 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ Rel ∅ |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ⊆ wss 3887 ∅c0 4256 × cxp 5587 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-rel 5596 |
This theorem is referenced by: relsnb 5712 reldm0 5837 cnveq0 6100 co02 6164 co01 6165 tpos0 8072 0we1 8336 0er 8535 canthwe 10407 relexpreld 14751 disjALTV0 36862 dibvalrel 39177 dicvalrelN 39199 dihvalrel 39293 |
Copyright terms: Public domain | W3C validator |