Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version |
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
Ref | Expression |
---|---|
rel0 | ⊢ Rel ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4311 | . 2 ⊢ ∅ ⊆ (V × V) | |
2 | df-rel 5558 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ Rel ∅ |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3408 ⊆ wss 3866 ∅c0 4237 × cxp 5549 Rel wrel 5556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-dif 3869 df-in 3873 df-ss 3883 df-nul 4238 df-rel 5558 |
This theorem is referenced by: relsnb 5672 reldm0 5797 cnveq0 6060 co02 6124 co01 6125 tpos0 7998 0we1 8233 0er 8428 canthwe 10265 relexpreld 14603 disjALTV0 36599 dibvalrel 38914 dicvalrelN 38936 dihvalrel 39030 |
Copyright terms: Public domain | W3C validator |