| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
| Ref | Expression |
|---|---|
| rel0 | ⊢ Rel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4366 | . 2 ⊢ ∅ ⊆ (V × V) | |
| 2 | df-rel 5648 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ⊆ wss 3917 ∅c0 4299 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-dif 3920 df-ss 3934 df-nul 4300 df-rel 5648 |
| This theorem is referenced by: relsnb 5768 reldm0 5894 cnveq0 6173 co02 6236 co01 6237 tpos0 8238 0we1 8473 0er 8712 canthwe 10611 relexpreld 15013 disjALTV0 38753 dibvalrel 41164 dicvalrelN 41186 dihvalrel 41280 reldmprcof1 49374 reldmprcof2 49375 reldmlan2 49610 reldmran2 49611 rellan 49616 relran 49617 |
| Copyright terms: Public domain | W3C validator |