![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version |
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
Ref | Expression |
---|---|
rel0 | ⊢ Rel ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4423 | . 2 ⊢ ∅ ⊆ (V × V) | |
2 | df-rel 5707 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ⊆ wss 3976 ∅c0 4352 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-ss 3993 df-nul 4353 df-rel 5707 |
This theorem is referenced by: relsnb 5826 reldm0 5952 cnveq0 6228 co02 6291 co01 6292 tpos0 8297 0we1 8562 0er 8801 canthwe 10720 relexpreld 15089 disjALTV0 38710 dibvalrel 41120 dicvalrelN 41142 dihvalrel 41236 |
Copyright terms: Public domain | W3C validator |