| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rel0 | Structured version Visualization version GIF version | ||
| Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.) |
| Ref | Expression |
|---|---|
| rel0 | ⊢ Rel ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . 2 ⊢ ∅ ⊆ (V × V) | |
| 2 | df-rel 5645 | . 2 ⊢ (Rel ∅ ↔ ∅ ⊆ (V × V)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Rel ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ⊆ wss 3914 ∅c0 4296 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-ss 3931 df-nul 4297 df-rel 5645 |
| This theorem is referenced by: relsnb 5765 reldm0 5891 cnveq0 6170 co02 6233 co01 6234 tpos0 8235 0we1 8470 0er 8709 canthwe 10604 relexpreld 15006 disjALTV0 38746 dibvalrel 41157 dicvalrelN 41179 dihvalrel 41273 reldmprcof1 49370 reldmprcof2 49371 reldmlan2 49606 reldmran2 49607 rellan 49612 relran 49613 |
| Copyright terms: Public domain | W3C validator |