MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rel0 Structured version   Visualization version   GIF version

Theorem rel0 5698
Description: The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
Assertion
Ref Expression
rel0 Rel ∅

Proof of Theorem rel0
StepHypRef Expression
1 0ss 4327 . 2 ∅ ⊆ (V × V)
2 df-rel 5587 . 2 (Rel ∅ ↔ ∅ ⊆ (V × V))
31, 2mpbir 230 1 Rel ∅
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  wss 3883  c0 4253   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-rel 5587
This theorem is referenced by:  relsnb  5701  reldm0  5826  cnveq0  6089  co02  6153  co01  6154  tpos0  8043  0we1  8298  0er  8493  canthwe  10338  relexpreld  14679  disjALTV0  36789  dibvalrel  39104  dicvalrelN  39126  dihvalrel  39220
  Copyright terms: Public domain W3C validator